Skip to main content

Advertisement

Log in

Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the electrical output voltage of highly piezoelectric properties of polyvinylidene fluoride (PVDF) was enhanced by using graphene oxide (GO) and reduced graphene oxide (RGO) additives. GO and RGO materials were synthesized by Hummer's method and their morphology, crystallinity and the effect of electrical outputs of β-PVDF were investigated. Different amounts of GO and RGO additives (0.4 and 0.8 wt%) embedded in PVDF polymeric material and electrospun nanofibres that show piezoelectric features were prepared by electrospinning process. All of the produced nanofibres were characterized in terms of structural and morphological properties by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The piezoelectric nanogenerators prepared using electrospun β-PVDF mats with different amounts of GO and RGO were fabricated by sandwiching between two conductive aluminium plates. The same dimension (4 cm × 5 cm) of nanogenerators with a mat thickness of 50 µm was used to evaluate the electrical output data. All of the produced nanogenerators were examined for a finger-tapping action with a frequency of ~ 5 Hz. It was observed that the presence of 0.8 wt% of RGO increased the open-circuit voltage of β-PVDF for approximately nine times. This enhancement is associated with a certain and powerful interfacial interaction that occurs within the adsorption of molecular chain conformation of β-PVDF onto the GO and RGO surfaces. This new type of RGO-based nanogenerator could be of great advantage for a wide range of applications such as a self-charging power source, flexible and stretchable electronic devices, energy-harvesting devices, sensors and other electronic-based systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.R. Anton, H.A. Sodano, Smart Mater. Struct. 16, R1 (2007)

    CAS  Google Scholar 

  2. D. Ai, H. Zhu, H. Luo, C. Wang, Constr. Build. Mater. 165, 472 (2018)

    Google Scholar 

  3. H. Kulkarni, K. Zohaib, A. Khusru, K. Shravan Aiyappa, Mater Today 5, 21299 (2018)

    Google Scholar 

  4. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, J.Bin Xu, ACS Nano 11, 4507 (2017)

    CAS  Google Scholar 

  5. T. Stevenson, D.G. Martin, P.I. Cowin, A. Blumfield, A.J. Bell, T.P. Comyn, P.M. Weaver, J. Mater. Sci. 26, 9256 (2015)

    CAS  Google Scholar 

  6. J. Briscoe, S. Dunn, Nano Energy 14, 15 (2014)

    Google Scholar 

  7. A. Shaji Karapuzha, N. Kunnamkuzhakkal James, S. van der Zwaag, W.A. Groen, J. Mater. Sci. 27, 9683 (2016)

    CAS  Google Scholar 

  8. S. Guan, H. Yang, G. Chen, R. Zhang, J. Electron. Mater. 47, 2625 (2018)

    CAS  Google Scholar 

  9. Y. Yoshino, MRS Online Proceedings Library Archive, vol. 518 (1998)

  10. M.-H. Zhao, Z.-L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)

    CAS  Google Scholar 

  11. S. Joshi, M.M. Nayak, K. Rajanna, ACS Appl. Mater. Interfaces. 6, 7108 (2014)

    CAS  Google Scholar 

  12. C. Dagdeviren, S. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F.G. Omenetto, Y. Huang, J.A. Rogers, Small 9, 3398 (2013)

    CAS  Google Scholar 

  13. S.-H. Shin, M.H. Lee, J.-Y. Jung, J.H. Seol, J. Nah, J. Mater. Chem. C 1, 8103 (2013)

    CAS  Google Scholar 

  14. E. Lee, J. Park, M. Yim, S. Jeong, G. Yoon, Appl. Phys. Lett. 104, 213908 (2014)

    Google Scholar 

  15. C. Abels, V. Mastronardi, F. Guido, T. Dattoma, A. Qualtieri, W. Megill, M. De Vittorio, F. Rizzi, Sensors 17, 1080 (2017)

    Google Scholar 

  16. S. Petroni, F. Guido, B. Torre, A. Falqui, M.T. Todaro, R. Cingolani, M. De Vittorio, Analyst 137, 5260 (2012)

    CAS  Google Scholar 

  17. N. Jackson, L. Keeney, A. Mathewson, Smart Mater. Struct. 22, 115033 (2013)

    Google Scholar 

  18. F. Guido, A. Qualtieri, L. Algieri, E.D. Lemma, M. De Vittorio, M.T. Todaro, Microelectron. Eng. 159, 174 (2016)

    CAS  Google Scholar 

  19. K. Maity, D. Mandal, ACS Appl. Mater. Interfaces. 10, 18257 (2018)

    CAS  Google Scholar 

  20. X.-Q. Fang, J.-X. Liu, V. Gupta, Nanoscale 5, 1716 (2013)

    CAS  Google Scholar 

  21. A. Toprak, O. Tigli, J. Mater. Sci. 28, 15877 (2017)

    CAS  Google Scholar 

  22. D. Chen, T. Sharma, J.X.J. Zhang, Sens. Actuators A 216, 196 (2014)

    CAS  Google Scholar 

  23. T. Park, B. Kim, Y. Kim, E. Kim, J. Mater. Chem. A 2, 5462 (2014)

    CAS  Google Scholar 

  24. J. Zhao, Z. You, Sensors 14, 12497 (2014)

    CAS  Google Scholar 

  25. J.-H. Lee, K.Y. Lee, B. Kumar, N.T. Tien, N.-E. Lee, S.-W. Kim, Energy Environ. Sci. 6, 169 (2013)

    CAS  Google Scholar 

  26. C. Sun, J. Shi, D.J. Bayerl, X. Wang, Energy Environ. Sci. 4, 4508 (2011)

    CAS  Google Scholar 

  27. K. Sappati, S. Bhadra, Sensors 18, 3605 (2018)

    Google Scholar 

  28. A. Baji, Y.-W. Mai, Q. Li, Y. Liu, Nanoscale 3, 3068 (2011)

    CAS  Google Scholar 

  29. J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G. Yang, Nano Energy (2018)

  30. B. Dutta, E. Kar, N. Bose, S. Mukherjee, RSC Adv. 5, 105422 (2015)

    CAS  Google Scholar 

  31. J. Li, P. Khanchaitit, K. Han, Q. Wang, Chem. Mater. 22, 5350 (2010)

    CAS  Google Scholar 

  32. C. Xing, J. Guan, Y. Li, J. Li, ACS Appl. Mater. Interfaces. 6, 4447 (2014)

    CAS  Google Scholar 

  33. T. Hattori, M. Kanaoka, H. Ohigashi, J. Appl. Phys. 79, 2016 (1996)

    CAS  Google Scholar 

  34. K. Nakamura, D. Sawai, Y. Watanabe, D. Taguchi, Y. Takahashi, T. Furukawa, T. Kanamoto, J. Polym. Sci. B 41, 1701 (2003)

    CAS  Google Scholar 

  35. L. Kouchachvili, M. Ikura, Int. J. Energy Res. 32, 328 (2008)

    CAS  Google Scholar 

  36. Y.J. Yang, S. Aziz, S.M. Mehdi, M. Sajid, S. Jagadeesan, K.H. Choi, J. Electron. Mater. 46, 4172 (2017)

    CAS  Google Scholar 

  37. J. Fu, Y. Hou, M. Zheng, Q. Wei, M. Zhu, H. Yan, ACS Appl. Mater. Interfaces. 7, 24480 (2015)

    CAS  Google Scholar 

  38. R. Gregorio, M. Cestari, F.E. Bernardino, J. Mater. Sci. 31, 2925 (1996)

    CAS  Google Scholar 

  39. A.K. Batra, A. Alomari, M. McDaniel, K. Mckay, M. Creer, Adv. Sci. Eng. Med. 7, 776 (2015)

    CAS  Google Scholar 

  40. Y. Daben, Ferroelectrics 101, 291 (1990)

    Google Scholar 

  41. H. Banno, K. Ogura, Ferroelectrics 95, 171 (1989)

    CAS  Google Scholar 

  42. H.L.W. Chan, M.C. Cheung, C.L. Choy, Ferroelectrics 224, 113 (1999)

    Google Scholar 

  43. B. Wei, Y. Daben, Ferroelectrics 157, 427 (1994)

    Google Scholar 

  44. J.B. Ngoma, J.Y. Cavaille, J. Paletto, J. Perez, F. Macchi, Ferroelectrics 109, 205 (1990)

    CAS  Google Scholar 

  45. Z. Dang, L. Wang, Y.I. Yin, Q. Zhang, Q. Lei, Adv. Mater. 19, 852 (2007)

    CAS  Google Scholar 

  46. L. Wang, Z.-M. Dang, Appl. Phys. Lett. 87, 42903 (2005)

    Google Scholar 

  47. A.K. Geim, K.S. Novoselov, in Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, 2010), pp. 11–19

  48. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)

    CAS  Google Scholar 

  49. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22, 3906 (2010)

    CAS  Google Scholar 

  50. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010)

    CAS  Google Scholar 

  51. S.M. Azeem, M.T. Saleem, M. Faizan, S. Ahmed, I. Masood, in Key Engineering Materials (Trans Tech Publ, 2018), pp. 144–150

  52. A.A. Isari, A. Payan, M. Fattahi, S. Jorfi, B. Kakavandi, Appl. Surf. Sci. 462, 549 (2018)

    CAS  Google Scholar 

  53. H. Kim, Y. Miura, C.W. MacOsko, Chem. Mater. 22, 3441 (2010)

    CAS  Google Scholar 

  54. L. Teresa, M. Gámez, J. Polym. Sci. 45, 2007 (2007)

    Google Scholar 

  55. C.M. Wu, M.H. Chou, Eur. Polym. J. 82, 35 (2016)

    CAS  Google Scholar 

  56. R.K. Layek, S. Samanta, D.P. Chatterjee, A.K. Nandi, Polymer 51, 5846 (2010)

    CAS  Google Scholar 

  57. S. Ansari, E.P. Giannelis, J. Polym. Sci. B 47, 888 (2009)

    CAS  Google Scholar 

  58. L. Wu, J. Alamusi, T. Xue, N. Itoi, Y. Hu, C. Li, J. Yan, H. Qiu, Ning, W. Yuan, J. Intell. Mater. Syst. Struct. 25, 1813 (2014)

    CAS  Google Scholar 

  59. J.S. Lee, K.-Y. Shin, C. Kim, J. Jang, Chem. Commun. 49, 11047 (2013)

    CAS  Google Scholar 

  60. J. Xue, L. Wu, N. Hu, J. Qiu, C. Chang, S. Atobe, H. Fukunaga, T. Watanabe, Y. Liu, H. Ning, Nanoscale 4, 7250 (2012)

    Google Scholar 

  61. M.A. Rahman, B.-C. Lee, D.-T. Phan, G.-S. Chung, Smart Mater. Struct. 22, 85017 (2013)

    Google Scholar 

  62. M.M. Abolhasani, K. Shirvanimoghaddam, M. Naebe, Compos. Sci. Technol. 138, 49 (2017)

    CAS  Google Scholar 

  63. Y. Chen, Y. Niu, T. Tian, J. Zhang, Y. Wang, Y. Li, L.-C. Qin, Chem. Phys. Lett. 677, 143 (2017)

    CAS  Google Scholar 

  64. D.S. Gyan, A. Dwivedi, J. Appl. Phys. 125, 24103 (2019)

    Google Scholar 

  65. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014)

    CAS  Google Scholar 

  66. S. Garain, S. Jana, T.K. Sinha, D. Mandal, ACS Appl. Mater. Interfaces 8, 4532 (2016)

    CAS  Google Scholar 

  67. S.-D. Wang, Q. Ma, K. Wang, H.-W. Chen, ACS Omega 3, 406 (2018)

    CAS  Google Scholar 

  68. C. Wu, X. Huang, L. Xie, X. Wu, J. Yu, P. Jiang, J. Mater. Chem. 21, 17729 (2011)

    CAS  Google Scholar 

  69. J.-K. Yuan, Z.-M. Dang, S.-H. Yao, J.-W. Zha, T. Zhou, S.-T. Li, J. Bai, J. Mater. Chem. 20, 2441 (2010)

    CAS  Google Scholar 

  70. J. Shang, Y. Zhang, L. Yu, B. Shen, F. Lv, P.K. Chu, Mater. Chem. Phys. 134, 867 (2012)

    CAS  Google Scholar 

  71. J. Shang, Y. Zhang, L. Yu, X. Luan, B. Shen, Z. Zhang, F. Lv, P.K. Chu, J. Mater. Chem. A 1, 884 (2013)

    CAS  Google Scholar 

  72. W. Tong, Y. Zhang, L. Yu, X. Luan, Q. An, Q. Zhang, F. Lv, P.K. Chu, B. Shen, Z. Zhang, J. Phys. Chem. C 118, 10567 (2014)

    CAS  Google Scholar 

  73. T. Liu, P.H. Zhou, J.L. Xie, L.J. Deng, J. Appl. Phys. 110, 33918 (2011)

    Google Scholar 

  74. X.-J. Zhang, G.-S. Wang, W.-Q. Cao, Y.-Z. Wei, M.-S. Cao, L. Guo, RSC Adv. 4, 19594 (2014)

    CAS  Google Scholar 

  75. M.El Achaby, F.Z. Arrakhiz, S. Vaudreuil, E.M. Essassi, A. Qaiss, Appl. Surf. Sci. 258, 7668 (2012)

    Google Scholar 

Download references

Acknowledgements

Synthesis and characterization measurements were performed at Dokuz Eylul University in Center for Fabrication and Applications of Electronic Materials. Also scanning electron microscopy measurements were performed at Dokuz Eylul University in Izmir Biomedicine and Genome Centre (IBG). All authors would like to thank all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merve Zeyrek Ongun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeyrek Ongun, M., Oguzlar, S., Doluel, E.C. et al. Enhancement of piezoelectric energy-harvesting capacity of electrospun β-PVDF nanogenerators by adding GO and rGO. J Mater Sci: Mater Electron 31, 1960–1968 (2020). https://doi.org/10.1007/s10854-019-02715-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02715-w

Navigation