Skip to main content
Log in

Structure and dielectric properties of low-permittivity thermal-stable NiO–MgO–GeO2 system ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Novel Ni4Mg6Ge3O16(NMG) ceramics intermediate between olivine and spinel were synthesized using solid-state reaction method. The phase evolution, crystal structure, microstructure, and dielectric properties were also systematically characterized. The NMG ceramics show the main rhombohedral phase Ni4Mg6Ge3O16 and a small amount of NiMgO2 second phase. When the sintering temperature was increased to 1475 °C, the second phase is significantly reduced, and the NMG ceramic impart great dielectric properties parameters of εr = 7.1, Q × f = 53,245 GHz, and τf = − 38.7 ppm/°C. Moreover, the 0.55NMG-0.45TiO2 ceramic can be obtained (εr =14.78, Q × f = 40,559 GHz, τf = − 2.49 ppm/°C) with high thermal stability, reflecting that it has the potential for 5G device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. H.H. Guo, M.S. Fu, D. Zhou, C. Du, P.J. Wang, L.X. Pang, W.F. Liu, A.S.B. Sombra, J.Z. Su, Design of a high-efficiency and -gain antenna using novel low-loss, temperature-stable Li2Ti1-x(Cu1/3Nb2/3)xO3 microwave dielectric ceramics. ACS Appl. Mater. Interfaces. 13(1), 912–923 (2021)

    Article  CAS  Google Scholar 

  2. X. Zhou, H. Zhou, X. Luan, S. Hu, K. Wang, X. Wang, S. He, S. Zhou, J. Shi, X. Chen, Structure and dielectric properties of novel series of 3CaO–RE2O3–2WO3 (RE = La, Nd and Sm) microwave ceramics and the adjustment of τf value. J. Mater. Sci.: Mater. Electron. 31(17), 14953–14960 (2020)

    CAS  Google Scholar 

  3. I. Bakaimi, X.L. He, S. Guerin, N.Z.I. Hashim, Q. Luo, I.M. Reaney, S. Gao, B.E. Hayden, C.H.K. De Groot, Combinatorial synthesis and screening of (Ba, Sr)(Ti, Mn)O, thin films for optimization of tunable co-planar waveguides. J. Mater. Chem. C. 6(23), 6222–6228 (2018)

    Article  CAS  Google Scholar 

  4. X. Dong, C.L. Sun, H.Y. Yang, L.Y. Yang, S.R. Zhang, Influence of Mg2SiO4 addition on crystal structure and microwave properties of Mg2Al4Si5O18 ceramic system. J. Mater. Sci.-Mater. Electron. 29(20), 17967–17973 (2018)

    Article  CAS  Google Scholar 

  5. X.C. Lu, Z.H. Du, B. Quan, W.J. Bian, H.K. Zhu, Q.T. Zhang, Structural dependence of the microwave dielectric properties of Cr3+-substituted ZnGa2O4 spinel ceramics: crystal distortion and vibration mode studies. J. Mater. Chem. C. 7(27), 8261–8268 (2019)

    Article  CAS  Google Scholar 

  6. H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, S. Trukhanov, Temperature stable Li2Ti0.75(Mg1/3Nb2/3)(0.25)O3-based microwave dielectric ceramics with low sintering temperature and ultra -low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C. 8(14), 4690–4700 (2020)

    Article  CAS  Google Scholar 

  7. S.H. Lei, H.Q. Fan, X.H. Ren, J.W. Fang, L.T. Ma, Z.Y. Liu, Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J. Mater. Chem. C. 5(16), 4040–4047 (2017)

    Article  CAS  Google Scholar 

  8. B.Y. Qu, H.L. Du, Z.T. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C. 4(9), 1795–1803 (2016)

    Article  CAS  Google Scholar 

  9. B.J. Jeong, M.R. Joung, S.H. Kweon, J.S. Kim, S. Nahm, J.W. Choi, S.J. Hwang, Effect of Bi2O3 doping on the sintering temperature and microwave dielectric properties of LiAlSiO4 ceramics. J. Am. Ceram. Soc. 95(6), 1811–1813 (2012)

    Article  CAS  Google Scholar 

  10. C.Z. Yin, Y. Tang, J.Q. Chen, F.H. Li, Y.J. Huang, C.C. Li, X.R. Xing, L. Fang, Two low-permittivity melilite ceramics in the SrO-MO-GeO2 (M = Mg, Zn) system and their temperature stability through compositional modifications. J. Eur. Ceram. Soc. 40(4), 1186–1190 (2020)

    Article  CAS  Google Scholar 

  11. S.H. Kweon, M.R. Joung, J.S. Kim, B.Y. Kim, S. Nahm, J.H. Paik, Y.S. Kim, T.H. Sung, Low temperature sintering and microwave dielectric properties of B2O3-added LiAlSiO4 ceramics. J. Am. Ceram. Soc. 94(7), 1995–1998 (2011)

    Article  CAS  Google Scholar 

  12. P. Gogoi, P. Sharma, D. Pamu, Microwave and broadband dielectric properties of Ni substituted MgTiO3 ceramics. J. Mater. Sci.-Mater. Electron. 27(9), 9052–9060 (2016)

    Article  CAS  Google Scholar 

  13. C.Z. Yin, Y. Tang, J.Q. Chen, C.C. Li, L. Fang, F.H. Li, Y.J. Huang, Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (−01 ≤ x ≤ 02). J. Mater. Sci. Mater. Electron. 30(17), 16651–16658 (2019)

    Article  CAS  Google Scholar 

  14. D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, Microwave dielectric ceramics in Li2O-Bi2O3-MoO3 system with ultra-low sintering temperatures. J. Am. Ceram. Soc. 93(4), 1096–1100 (2010)

    Article  CAS  Google Scholar 

  15. K. Cheng, C.C. Li, H.C. Xiang, Y.H. Sun, L.F. Li, YGeO4: novel low-permittivity microwave dielectric ceramics with intrinsic low sintering temperature. Mater. Lett. 228, 96–99 (2018)

    Article  CAS  Google Scholar 

  16. A. Manan, Z. Ullah, A.S. Ahmad, A. Ullah, D.F. Khan, A. Hussain, M.U. Khan, Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3-xCa(0.6)La(0.8/3)TiO(3) ceramics. J. Adv. Ceram. 7(1), 72–78 (2018)

    Article  CAS  Google Scholar 

  17. J.S. Wei, P. Liu, H.X. Lin, Z.H. Ying, P. Zheng, W.T. Su, K.X. Song, H.B. Qin, Crystal structure and microwave dielectric properties of CaTiO3 modified Mg2Al4Si5O18 cordierite ceramics. J. Alloy. Compd. 689, 81–86 (2016)

    Article  CAS  Google Scholar 

  18. H.L. Pan, M.T. Liu, M.F. Li, F. Ling, H.T. Wu, Low temperature sintering and microwave dielectric properties of Li6Mg7Ti3O16 ceramics with LiF additive for LTCC applications. J. Mater. Sci.-Mater. Electron. 29(2), 999–1003 (2018)

    Article  CAS  Google Scholar 

  19. H.L. Pan, H.T. Wu, Crystal structure, infrared spectra and microwave dielectric properties of new ultra low-loss Li6Mg7Ti3O16 ceramics. Ceram. Int. 43(16), 14484–14487 (2017)

    Article  CAS  Google Scholar 

  20. G. Schileo, A. Dias, R.L. Moreira, T.J. Jackson, P.A. Smith, K.T.S. Chung, A. Feteira, Structure and microwave dielectric properties of low firing Bi2Te2W3O16 ceramics. J. Am. Ceram. Soc. 97(4), 1096–1102 (2014)

    Article  CAS  Google Scholar 

  21. K.G. Wang, H.F. Zhou, X.B. Liu, W.D. Sun, X.L. Chen, A. Ruan, A lithium aluminium borate composite microwave dielectric ceramic with low permittivity, near-zero shrinkage, and low sintering temperature. J. Eur. Ceram. Soc. 39(4), 1122–1126 (2019)

    Article  Google Scholar 

  22. X. Zhou, K. Wang, S. Hu, X. Luan, S. He, X. Wang, S. Zhou, X. Chen, H. Zhou, Preparation, structure and microwave dielectric properties of novel La2MgGeO6 ceramics with hexagonal structure and adjustment of its τ value. Ceram. Int. 47(6), 7783–7789 (2021)

    Article  CAS  Google Scholar 

  23. A. Manan, S.U. Khan, I. Qazi, Influence of sintering temperature on secondary phases formation and microwave dielectric properties of Ca2Ce2Ti5O16 ceramics. Mater. Sci. 32(2), 297–300 (2014)

    CAS  Google Scholar 

  24. Y.Z. Hao, Q.L. Zhang, J. Zhang, C.R. Xin, H. Yang, Enhanced sintering characteristics and microwave dielectric properties of Li2TiO3 due to nano-size and nonstoichiometry effect. J. Mater. Chem. 22(45), 23885–23892 (2012)

    Article  CAS  Google Scholar 

  25. D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, BiVO4 based high k microwave dielectric materials: a review. J. Mater. ChemC. 6(35), 9290–9313 (2018)

    CAS  Google Scholar 

  26. H.C. Xiang, Y. Bai, C.C. Li, L. Fang, H. Jantunen, Structural, thermal and microwave dielectric properties of the novel microwave material Ba2TiGe2O8. Ceram. Int. 44(9), 10824–10828 (2018)

    Article  CAS  Google Scholar 

  27. Z.J. Song, K.X. Song, B. Liu, P. Zheng, H.B. Bafrooei, W.T. Su, H.X. Lin, F. Shi, D.W. Wang, I.M. Reaney, Temperature-dependent dielectric and Raman spectra and microwave dielectric properties of gehlenite-type Ca2Al2SiO7 ceramics. Int. J. Appl. Ceram. Technol. 17(2), 771–777 (2020)

    Article  CAS  Google Scholar 

  28. K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1–x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A-Mater. Sci. Process. 81(4), 823–826 (2005)

    Article  CAS  Google Scholar 

  29. J.Q. Chen, Y. Tang, C.Z. Yin, M.Y. Yu, H.C. Xiang, C.C. Li, X.R. Xing, L. Fang, Structure, microwave dielectric performance, and infrared reflectivity spectrum of olivine-type Mg2Ge0.98O4 ceramic. J. Am. Ceram. Soc. 103(3), 1789–1797 (2020)

    Article  CAS  Google Scholar 

  30. J. Cao, X.D. Yu, X.J. Kuang, Q. Su, Phase relationships in the BaO-Ga2O3-Ta2O5 system and the structure of Ba6Ga21TaO40. Inorg. Chem. 51(14), 7788–7793 (2012)

    Article  CAS  Google Scholar 

  31. X.C. Liu, J.P. Deng, Phase structure and dielectric property of the ZnNb2O6-(Mg0.3Zn0.7)TiO3 multiphase ceramics. J. Mater. Sci.-Mater. Electron. 23(2), 506–510 (2012)

    Article  Google Scholar 

  32. Y. Guo, H. Ohsato, K.-I. Kakimoto, Characterization and dielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. J. Eur. Ceram. Soc. 26(10–11), 1827–1830 (2006)

    Article  CAS  Google Scholar 

  33. Z.Y. Tan, K.X. Song, H.B. Bafrooei, B. Liu, J. Wu, J.M. Xu, H.X. Lin, D.W. Wang, The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application. Ceram. Int. 46(10), 15665–15669 (2020)

    Article  CAS  Google Scholar 

  34. I. Kagomiya, J. Sugihara, K. Kakimoto, H. Ohsato, Liquid phase deposition process to deposit TiO2 in the porous Mg2SiO4 ceramics. J. Ceram. Soc. Jpn. 118(1380), 731–734 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Nos. 61761015 and 11664008) and the Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001, and 2017GXNSFDA198027) and High-Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SZ and XW. The first draft of the manuscript was written by SZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huanfu Zhou or You Wu.

Ethics declarations

Conflict of interest

There are no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Wang, X., Chen, X. et al. Structure and dielectric properties of low-permittivity thermal-stable NiO–MgO–GeO2 system ceramics. J Mater Sci: Mater Electron 33, 13455–13461 (2022). https://doi.org/10.1007/s10854-022-08242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08242-5

Navigation