Skip to main content
Log in

3–1-type PZT-based porous ceramic and composites with highly oriented pore structure for acoustic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure tert-butyl alcohol as vehicle was used to fabricate 3–1-type porous lead zirconate titanate ceramics (3–1-type porous PZT ceramics) and lead zirconate titanate/epoxy (PZT/epoxy) composites by freeze-casting. 3–1-type porous PZT ceramics with porosity ranging from 47.32 to 75.41% are obtained by varying initial solid loading in freeze-casting slurry. With the increase of porosity, piezoelectric properties exhibited small decline. The piezoelectric coefficient (d33) is 688 pC/N, which almost as same as the bulk piezoelectric ceramics although the porosity is up to 63.05%. The special 3–1-type porous structure promotes the polarization and pushes the domain deflected, which enhances the piezoelectric, dielectric, and acoustic properties greatly. After filling epoxy into the unidirectional channel, the piezoelectric properties decreased slightly while the mechanical property of composites is 2–3 times higher than 3–1-type porous PZT ceramics. The acoustic impedance value (Z) of 3–1-type porous PZT ceramics and composites reach to 2.918 and 6.03 MRayls, respectively. These values are much lower than dense PZT phase (16 MRayls) and conducive to improve the acoustic matching with water and biological tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. All data generated or analyzed during this study are included in this article.

References

  1. R. Potong, R. Rianyoi, A. Ngamjarurojana, A. Chaipanich, Ceram. Int. 39, S53 (2013)

    Article  CAS  Google Scholar 

  2. T. Xu, C.-A. Wang, A. Feteira, J. Am. Ceram. Soc. 97, 1511 (2014)

    Article  CAS  Google Scholar 

  3. W. Liu, L. Lv, Y. Li et al., Ceram. Int. 43, 6542 (2017)

    Article  CAS  Google Scholar 

  4. R. Guo, C.-A. Wang, A. Yang, J. Fu, J. Appl. Phys. 108, 124112 (2010)

    Article  CAS  Google Scholar 

  5. S. Deville, Adv. Eng. Mater. 10, 155 (2008)

    Article  CAS  Google Scholar 

  6. W.L. Li, K. Lu, J.Y. Walz, Int. Mater. Rev. 57, 37 (2012)

    Article  CAS  Google Scholar 

  7. T. Yangchuan, Z. Tianbo, L. Fengyan, W. Yue, Chem. Mater. 18, 4218 (2006)

    Article  CAS  Google Scholar 

  8. B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim, Y.-H. Koh, Scripta Mater. 58, 537 (2008)

    Article  CAS  Google Scholar 

  9. E. Papa, V. Medri, P. Benito et al., Microporous Mesoporous Mater. 215, 206 (2015)

    Article  CAS  Google Scholar 

  10. T. Waschkies, R. Oberacker, M.J. Hoffmann, Acta Mater. 59, 5135 (2011)

    Article  CAS  Google Scholar 

  11. C.-Q. Hong, J.-C. Han, X.-H. Zhang, J.-C. Du, Scripta Mater. 68, 599 (2013)

    Article  CAS  Google Scholar 

  12. K. Araki, J.W. Halloran, J. Am. Ceram. Soc. 87, 2014 (2004)

    Article  CAS  Google Scholar 

  13. M.N. Rahaman, Q. Fu, J. Am. Ceram. Soc. 91, 4137 (2008)

    Article  CAS  Google Scholar 

  14. H. Zhang, P. D’Angelo Nunes, M. Wilhelm, K. Rezwan, J. Eur. Ceram. Soc. 36, 51 (2016)

    Article  CAS  Google Scholar 

  15. T. Moritz, H.-J. Richter, J. Eur. Ceram. Soc. 27, 4595 (2007)

    Article  CAS  Google Scholar 

  16. R. Liu, J. Yuan, C.-A. Wang, J. Eur. Ceram. Soc. 33, 3249 (2013)

    Article  CAS  Google Scholar 

  17. J. Cui, C. Li, Y. Deng, Y. Wang, W. Wang, Int. J. Pharmaceut. 312, 131 (2006)

    Article  CAS  Google Scholar 

  18. K.A. Jackson, J.D. Hunt, T. Metallur, Soc. A 236, 1129 (1996)

    Google Scholar 

  19. Y. Tang, S. Qiu, C. Wu, Q. Miao, K. Zhao, J. Eur. Ceram. Soc. 36, 1513 (2016)

    Article  CAS  Google Scholar 

  20. K. Cung, B.J. Han, T.D. Nguyen, S. Mao, Y.W. Yeh, Nano Lett. 13, 6197 (2013)

    Article  CAS  Google Scholar 

  21. W. Thamjaree, W. Nhuapeng, A. Chaipanich, T. Tunkasiri, Appl. Phys. A 81, 1419 (2005)

    Article  CAS  Google Scholar 

  22. K.H. Lam, H.L.W. Chan, Appl. Phys. A 81, 1451 (2005)

    Article  CAS  Google Scholar 

  23. R. Ramesh, H. Kara, C.R. Bowen, Comp. Mater. Sci. 30, 397 (2004)

    Article  CAS  Google Scholar 

  24. J. Li, W. Ryuzo, J. Am. Ceram. Soc. 82, 213 (1999)

    Article  Google Scholar 

  25. R.J. Meyer, S. Yoshikawa, T.R. Shrout, Mater. Res. Innov. 3, 324 (2000)

    Article  CAS  Google Scholar 

  26. S.H. Choy, H.L.W. Chan, M.W. Ng, P.C.K. Liu, Appl. Phys. A 81, 817 (2005)

    Article  CAS  Google Scholar 

  27. L. Kun, L. Jianling, C. Dahu, J.-H. Li, J. Compos. Mater. 42, 1125 (2008)

    Article  CAS  Google Scholar 

  28. D.A. van den Ende, B.F. Bory, W.A. Groen, S. van der Zwaag, Integr. Ferroelectr. 114, 108 (2010)

    Article  CAS  Google Scholar 

  29. G. Liu, T.W. Button, Ceram. Int. 39, 8507 (2013)

    Article  CAS  Google Scholar 

  30. P. Sun, G. Wang, D. Wu, B. Zhu, C. Hu, C. Liu, Ferroelectrics 408, 120 (2010)

    Article  CAS  Google Scholar 

  31. J. Araki, M. Wada, S. Kuga, Langmuir 17, 21 (2001)

    Article  CAS  Google Scholar 

  32. D. Das, S. Panigrahi, P.K. Misra, A. Nayak, Energy Fuel 22, 1865 (2008)

    Article  CAS  Google Scholar 

  33. T. Xu, C.-A. Wang, Mater. Des. 91, 242 (2016)

    Article  CAS  Google Scholar 

  34. T. Xu, C.-A. Wang, H.E. Kim, J. Am. Ceram. Soc. 98, 2700 (2015)

    Article  CAS  Google Scholar 

  35. Y.D. Hou, P.X. Lu, M.K. Zhu, X.M. Song, J.L. Tang, Mater. Sci. Eng. B 116, 104 (2005)

    Article  CAS  Google Scholar 

  36. R. Kar-Gupta, T.A. Venkatesh, Smart Mater Struct. 22, 025035 (2013)

    Article  CAS  Google Scholar 

  37. M. Zhang, H. Sun, X. Liu, H. Sui, S. Xiao, Mater. Res. Bull. 127, 110862 (2020)

    Article  CAS  Google Scholar 

  38. W. Liu, N. Li, Y. Wang, H. Xu, J. Wang, J. Yang, J. Eur. Ceram. Soc. 35, 3467 (2015)

    Article  CAS  Google Scholar 

  39. R. Guo, C.-A. Wang, A. Yang, J. Am. Ceram. Soc. 94, 1794 (2011)

    Article  CAS  Google Scholar 

  40. A. Yang, C.-A. Wang, R. Guo, Y. Huang, C.-W. Nan, Ceram. Int. 36, 549 (2010)

    Article  CAS  Google Scholar 

  41. Y. Zhang, M. Xie, J. Roscow, Y. Bao, K. Zhou, D. Zhang, J Mater Chem A Mater. 5, 6569 (2017)

    Article  CAS  Google Scholar 

  42. M. Avellaneda, P.J. Swart, J. Acoust. Soc. Am. 3, 103 (1998)

    Google Scholar 

  43. S.-H. Lee, S.-H. Jun, H.-E. Kim, Y.-H. Koh, J. Am. Ceram. Soc. 91, 1912 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1806221) and the Instruction & Development Project for National Funding Innovation Demonstration Zone of Shandong Province (2018ZCQZB01, 2019ZCQZB03).

Funding

Funding was provided by the National Natural Science Foundation of China (U1806221, 2018ZCQZB01, 2019ZCQZB03).

Author information

Authors and Affiliations

Authors

Contributions

HQ contributed to conceptualization, data curation, methodology, writing of the original draft, and visualization. HS contributed to supervision and writing, reviewing, & editing of the manuscript. XL contributed to investigation and formal analysis. HS contributed to supervision, writing, reviewing, & editing of the manuscript. DH contributed to supervision and writing, reviewing, & editing of the manuscript.

Corresponding author

Correspondence to Xiaofang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Sun, H., Liu, X. et al. 3–1-type PZT-based porous ceramic and composites with highly oriented pore structure for acoustic applications. J Mater Sci: Mater Electron 33, 12171–12181 (2022). https://doi.org/10.1007/s10854-022-08177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08177-x

Navigation