Skip to main content
Log in

Effect of Sr substitution on structural properties of LaCrO3 perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Reply to Comment to this article was published on 24 August 2022

A Comment/Reply to this article was published on 22 August 2022

Abstract

We present the structural studies of perovskite-type La1−xSrxCrO3 (0 ≤ x ≤ 0.30) compounds synthesized using the co-precipitation method. The as-synthesized samples exhibit that orthorhombic crystal structure with Pnma space group was confirmed using the X-ray diffraction method. The peak shift towards higher 2θ values was observed, which may be due to charge imbalance created by Sr2+ substitution in LaCrO3 and compensated by the mixed valence of Chromium ion and oxygen defects. The Rietveld fitted X-ray diffraction pattern confirms a single-phase orthorhombic structure belongs to the Pnma space group. The effect of Sr2+ substitution on bond lengths and bond angles of LaCrO3 are observed by the detailed analysis of Rietveld fitted data. It was observed that lattice parameters and cell volume decrease with increasing Sr2+ concentration. Raman spectroscopy results show that with increasing Sr2+ concentration, there is a decrease in intensity and slight shifting of modes towards lower wave number in low and high wavenumber region. FTIR spectroscopy result reveals that the bending and stretching vibration occurred due to O–Cr–O and Cr–O bonding. Our XPS studies revealed that Lanthanum and strontium are in 3+ and 2+ oxidation states, and Cr is in 3+, 4+, and 6+ oxidation states. The present study revealed the structural distortion and increase of Cr oxidation states along with the oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Wan, J. Yang, H. Hou, S. Xu, G. Liu, S. Hussain, G. Qiao, J. Mater. Sci. Mater. Electron. 30, 3472 (2019)

    Article  CAS  Google Scholar 

  2. R.S. Silva, J.A. Aguiar, P. Barrozo, Ceram. Int. 44, 5921 (2018)

    Article  CAS  Google Scholar 

  3. J. Cheng, A. Navrotsky, X.D. Zhou, H.U. Anderson, J. Mater. Res. 20, 191 (2005)

    Article  CAS  Google Scholar 

  4. J.H. Kim, D.H. Peck, R.H. Song, G.Y. Lee, D.R. Shin, S.H. Hyun, J. Wackerl, K. Hilpert, J. Electroceramics 17, 729 (2006)

    Article  CAS  Google Scholar 

  5. M. Coskun, O. Polat, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, Mater. Sci. Eng. B 248, 114410 (2019)

    Article  CAS  Google Scholar 

  6. R. Situmeang, R. Supryanto, L.N.A. Kahar, W. Simanjuntak, S. Sembiring, Orient. J. Chem. 33, 1705 (2017)

    Article  CAS  Google Scholar 

  7. M. Erianti, R. Situmeang, S. Sembiring, J. Phys. Conf. Ser. 1751, 10 (2021)

    Article  Google Scholar 

  8. J.C. Ding, Z.P. Wu, H.Y. Li, Z.X. Cai, X.X. Wang, X. Guo, KnE Mater. Sci. 1, 36 (2016)

    Article  Google Scholar 

  9. J. Sfeir, J. Power Sources 118, 276 (2003)

    Article  CAS  Google Scholar 

  10. O. Polat, M. Coskun, F.M. Coskun, Z. Durmus, M. Caglar, A. Turut, J. Mater. Sci. Mater. Electron. 29, 16939 (2018)

    Article  CAS  Google Scholar 

  11. K.H.L. Zhang, Y. Du, A. Papadogianni, O. Bierwagen, S. Sallis, L.F.J. Piper, M.E. Bowden, V. Shutthanandan, P.V. Sushko, S.A. Chambers, Adav. Mater. 27, 5191 (2015)

    Article  CAS  Google Scholar 

  12. O. Polat, M. Coskun, F.M. Coskun, J. Zlamal, Z. Durmus, M. Caglar, A. Turut, Mater. Res. Bull. 124, 110759 (2020)

    Article  CAS  Google Scholar 

  13. C.P. Khattak, D.E. Cox, Mater. Res. Bull. 12, 463 (1977)

    Article  CAS  Google Scholar 

  14. R.K. Gupta, C.M. Whang, J. Phys. Condens. Matter 19, 196209 (2007)

    Article  Google Scholar 

  15. B.H. Toby, J. Appl. Crystallogr. 34, 210 (2001)

    Article  CAS  Google Scholar 

  16. R. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  17. K.R. Chakraborty, S.M. Yusuf, P.S.R. Krishna, M. Ramanadham, A.K. Tyagi, V. Pomjakushin, J. Phys. Condens. Matter 18, 8661 (2006)

    Article  CAS  Google Scholar 

  18. M. Sukumar, L.J. Kennedy, J.J. Vijaya, B. Al-Najar, M. Bououdina, J. Magn. Magn. Mater. 465, 48 (2018)

    Article  CAS  Google Scholar 

  19. M.A. Islam, J.M. Rondinelli, J.E. Spanier, J. Phys. Condens. Matter 25, 175902 (2013)

    Article  Google Scholar 

  20. M.N. Iliev, M.V. Abrashev, J. Laverdière, S. Jandl, M.M. Gospodinov, Y.Q. Wang, Y.Y. Sun, Phys. Rev. B. 73, 3 (2006)

    Article  Google Scholar 

  21. B.B. Dash, S. Ravi, J. Magn. Magn. Mater. 448, 355 (2018)

    Article  CAS  Google Scholar 

  22. V.S. Bhadram, B. Rajeswaran, A. Sundaresan, C. Narayana, EPL 101, 17008 (2013)

    Article  Google Scholar 

  23. N.D. Todorov, M.V. Abrashev, V.G. Ivanov, G.G. Tsutsumanova, V. Marinova, Y.Q. Wang, M.N. Iliev, Phys. Rev. B. 83, 5 (2011)

    Article  Google Scholar 

  24. K.D. Singh, R. Pandit, R. Kumar, Solid State Sci. 85, 70 (2018)

    Article  CAS  Google Scholar 

  25. N. Gunasekaran, S. Rajadurai, J.J. Carberry, N. Bakshi, C.B. Alcock, Solid State Ionics 81, 243 (1995)

    Article  CAS  Google Scholar 

  26. M. Iliev, M. Abrashev, Phys. Rev. B 57, 2872 (1998)

    Article  CAS  Google Scholar 

  27. V.S. Bhadram, D. Swain, R. Dhanya, Mater. Res. Express 3, 1 (2014)

    Google Scholar 

  28. T. Patri, J. Ponnaiah, P. Kutty, A. Ghosh, Ceram. Int. 42, 13834 (2016)

    Article  CAS  Google Scholar 

  29. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)

    Article  CAS  Google Scholar 

  30. A.K. Opitz, C. Rameshan, M. Kubicek, G.M. Rupp, A. Nenning, T. Götsch, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, B. Klötzer, J. Fleig, Top. Catal. 61, 2129 (2018)

    Article  CAS  Google Scholar 

  31. P.S. Bagus, E.S. Ilton, C.J. Nelin, Surf. Sci. Rep. 68, 273 (2013)

    Article  CAS  Google Scholar 

  32. K. Rida, A. Benabbas, F. Bouremmad, M.A. Peña, E. Sastre, A. Martínez-Arias, Appl. Catal. B 84, 457 (2008)

    Article  CAS  Google Scholar 

  33. J. Deng, L. Zhang, H. Dai, H. He, C.T. Au, Ind. Eng. Chem. Res. 47, 8175 (2008)

    Article  CAS  Google Scholar 

  34. H. Bhatt, J. Bahadur, M.N. Deo, S. Ramanathan, K.K. Pandey, D. Sen, S. Mazumder, S.M. Sharma, J. Solid State Chem. 184, 204 (2011)

    Article  CAS  Google Scholar 

  35. L. Xie, J.Z. Zhang, J.Q. Yu, J. Zhang, M.H. Li, H.G. Zhang, Appl. Phys. A 127, 1–10 (2021)

    Article  Google Scholar 

  36. Q.H. Wu, M. Liu, W. Jaegermann, Mater. Lett. 59, 1980 (2005)

    Article  CAS  Google Scholar 

  37. R. Sankannavar, K.C. Sandeep, S. Kamath, A.K. Suresh, A. Sarkar, J. Electrochem. Soc. 165, J3236 (2018)

    Article  CAS  Google Scholar 

  38. E.J. Crumlin, E. Mutoro, Z. Liu, M.E. Grass, M.D. Biegalski, Y.L. Lee, D. Morgan, H.M. Christen, H. Bluhm, Y. Shao-Horn, Energy Environ. Sci. 5, 6081 (2012)

    Article  CAS  Google Scholar 

  39. P.A.W. Van Der Heide, Surf. Interface Anal. 33, 414 (2002)

    Article  Google Scholar 

  40. S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M. Wang, G. Liu, G. Qiao, Ceram. Int. 45, 15164 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very thankful to the Director, NIT Hamirpur, for his support and encouragement for this research work. We are also thankful to the Director, Indian Institute of Technology, (IIT) Mandi for X-Ray Photoelectron Spectroscopy (XPS) and the Director, IUAC, New Delhi for X-Ray diffraction (XRD).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RK: Synthesis, Analyzation of Raman and XPS data, Writing. KDS: Experimental, Rietveld refinement, Characterization. RK: Conceptualization of the idea and editing of Manuscript.

Corresponding author

Correspondence to Ravinder Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, K.D. & Kumar, R. Effect of Sr substitution on structural properties of LaCrO3 perovskite. J Mater Sci: Mater Electron 33, 12039–12052 (2022). https://doi.org/10.1007/s10854-022-08164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08164-2

Navigation