Skip to main content
Log in

Enhancing the CO2 sensor response of nickel oxide-doped tin dioxide thin films synthesized by SILAR method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present article investigates the chemiresistive gas sensing characteristics of undoped and nickel oxide-doped tin oxide gas sensors at different concentrations synthesized by a SILAR technique. The structural analysis revealed a tetragonal crystal structure with (110) dominant diffraction peaks and crystallite sizes ranging between 26 and 32 nm. When the NiO dopant concentration was increased to 7% by volume, AFM analysis revealed the development of island-like stairs on the surface of the SnO2 film, with the average grain size rising from 28.16 to 36.12 nm. FESEM micrographs revealed a porous surface with nano-spherical structures clustered together to form a sea stone-like structure with particle sizes ranging from 23.8 to 42.3 nm. When exposed to CO2, the developed sensor exhibits a rapid response time and strong stability properties. At an operating temperature of 323 K, the 5 percent nickel oxide-doped sample displayed the maximum sensor response (128%), with a response time of 13 s and a recovery time of 34 s. The designed sensor's dynamic response improved as the CO2 concentration increased. According to the sensing results, the 5% nickel oxide-doped film exhibits stability in the ambient atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A.A. Khalefa, J.M. Marei, H.A. Radwan, J.M. Rzaij, Dig. J. Nanomater. Biostructures 16, 197 (2021)

    Google Scholar 

  2. B.E. Al-Jumaili, J.M. Rzaij, A.S. Ibraheam, Mater. Today Proc. 42, 2603 (2021)

    Article  CAS  Google Scholar 

  3. J.M. Marei, A.A. Khalefa, Q.A. Abduljabbar, J.M. Rzaij, J. Nano Res. 70, 41 (2021)

    Article  CAS  Google Scholar 

  4. J.S. Lee, O.S. Kwon, S.J. Park, E.Y. Park, S.A. You, H. Yoon, J. Jang, ACS Nano 5, 7992 (2011)

    Article  CAS  Google Scholar 

  5. S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu, T. Zhang, H. Ning, Sensors (Switzerland) 19, 1 (2019)

    Google Scholar 

  6. T. Yang, T.T. Song, M. Callsen, J. Zhou, J.W. Chai, Y.P. Feng, S.J. Wang, M. Yang, Adv. Mater. Interfaces 6, 1801160 (2019)

    Article  Google Scholar 

  7. A.V. Shaposhnik, D.A. Shaposhnik, S.Y. Turishchev, O.A. Chuvenkova, S.V. Ryabtsev, A.A. Vasiliev, X. Vilanova, F. Hernandez-Ramirez, J.R. Morante, Beilstein J. Nanotechnol. 10, 1380 (2019)

    Article  CAS  Google Scholar 

  8. H.-J. Zhang, F.-N. Meng, L.-Z. Liu, Y.-J. Chen, JALCOM J. Alloy. Compd. 774, 1181 (2019)

    Article  CAS  Google Scholar 

  9. A.P. Sharma, P. Dhakal, D.K. Pradhan, M.K. Behera, B. Xiao, M. Bahoura, AIP Adv. 8, 095219 (2018)

    Article  Google Scholar 

  10. I.M. Ibrahim, J.M. Rzaij, A. Ramizy, Dig. J. Nanomater. Biostructures 12, 1187 (2017)

    Google Scholar 

  11. Y. Kong, Y. Li, X. Cui, L. Su, D. Ma, T. Lai, L. Yao, X. Xiao, Y. Wang, Nano Mater. Sci. https://doi.org/10.1016/j.nanoms.2021.05.006 (2021).

    Article  Google Scholar 

  12. Y.T. Gebreslassie, H.G. Gebretnsae, Nanoscale Res. Lett. 16, 97 (2021)

    Article  CAS  Google Scholar 

  13. K. Joy, S.S. Lakshmy, P.V. Thomas, J. Sol-Gel Sci. Technol. 61, 179 (2012)

    Article  CAS  Google Scholar 

  14. T. Yoshioka, N. Mizuno, M. Iwamoto, Chem. Lett. 20, 1249 (1991)

    Article  Google Scholar 

  15. E. Brunet, T. Maier, G.C. Mutinati, S. Steinhauer, A. Köck, C. Gspan, W. Grogger, Sensors Actuators B Chem. 165, 110 (2012)

    Article  CAS  Google Scholar 

  16. D. Wang, Y. Chen, Z. Liu, L. Li, C. Shi, H. Qin, J. Hu, Sensors Actuators B Chem. 227, 73 (2016)

    Article  CAS  Google Scholar 

  17. S. Joshi, L. Satyanarayana, P. Manjula, M. V. Sunkara, S. J. Ippolito, in 2015 2nd Int. Symp. Phys. Technol. Sensors (IEEE, 2015), pp. 43–48.

  18. E. Comini, Anal. Chim. Acta 568, 28 (2006)

    Article  CAS  Google Scholar 

  19. M. Kuppan, S. Kaleemulla, N. M. Rao, N. Sai Krishna, M. R. Begam, M. Shobana, Adv. Condens. Matter Phys. 2014, 5 (2014).

    Article  Google Scholar 

  20. B. D. Cullity, Addison-Wesley, Reading, MA (1972).

  21. S. Lu, X. Hu, H. Zheng, J. Qiu, R. Tian, W. Quan, X. Min, P. Ji, Y. Hu, S. Cheng, W. Du, X. Chen, B. Cui, X. Wang, W. Zhang, Sensors (Switzerland) 19, 1 (2019)

    Google Scholar 

  22. J.M. Rzaij, A.S. Ibraheam, A.M. Abass, Baghdad Sci. J. 18, 401 (2021)

    Google Scholar 

  23. I. Muniyandi, G.K. Mani, P. Shankar, J.B.B. Rayappan, Ceram. Int. 40, 7993 (2014)

    Article  CAS  Google Scholar 

  24. R.G. Dhere, H.R. Moutinho, S. Asher, D. Young, X. Li, R. Ribelin, T. Gessert, Natl. Renew. Energy Lab. 520, 242 (2009)

    Google Scholar 

  25. I.M. Ali, J.M. Rzaij, Q.A. Abbas, I.M. Ibrahim, H.J. Alatta, Iran. J. Sci. Technol. Trans. A Sci. 42, 2375 (2018)

    Article  Google Scholar 

  26. A. Kumar, D. Singh, D. Kaur, Surf. Coatings Technol. 203, 1596 (2009)

    Article  CAS  Google Scholar 

  27. Q.A. Abduljabbar, H.A. Radwan, J.M. Marei, J.M. Rzaij, Eng. Res. Express 4, 015028 (2022)

    Article  Google Scholar 

  28. J.M. Rzaij, N.F. Habubi, Appl. Phys. A Mater. Sci. Process. 126, 560 (2020)

    Article  CAS  Google Scholar 

  29. P. Nowak, W. Maziarz, A. Rydosz, K. Kowalski, M. Ziabka, K. Zakrzewska, Sensors (Switzerland) 20, 1 (2020)

    Article  Google Scholar 

  30. G.K. Mani, J.B.B. Rayappan, Sensors Actuators B Chem. 198, 125 (2014)

    Article  CAS  Google Scholar 

  31. N. Miura, J. Wang, M. Nakatou, P. Elumalai, S. Zhuiykov, D. Terada, and T. Ono, in Adv. Electron. Ceram. Mater. Ceram. Eng. Sci. Proc. (Wiley, Hoboken, NJ, 2005), pp. 3–13.

  32. M. Hjiri, L. El Mir, S.G. Leonardi, Chemosensors 2, 121 (2014)

    Article  Google Scholar 

  33. Y. Vijayakumar, G.K. Mani, M.V.R. Reddy, J.B.B. Rayappan, Ceram. Int. 41, 2221 (2015)

    Article  CAS  Google Scholar 

  34. A.S. Garde, Sensors Transducers J. 122, 128 (2010)

    CAS  Google Scholar 

  35. H. Liu, W. Shen, X. Chen, J.-P. Corriou, J. Mater. Sci. Mater. Electron. 29, 18380 (2018)

    Article  CAS  Google Scholar 

  36. B. Sharma, A. Sharma, M. Joshi, J. Myung, Chemosensors 8, 67 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would thank Anbar University and Alnukhba University College for their support.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The developed sensor exhibits a high selectivity for CO2 detection and a high degree of stability in the ambient atmosphere.

Corresponding author

Correspondence to Nadir F. Habubi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

We, the undersigned, declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Informed consent

All authors have read this manuscript and would like to participate in the Journal submission.

Consent for publication

All authors have read this manuscript and would like to have it considered exclusively for publication in Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzaij, J.M., Habubi, N.F. Enhancing the CO2 sensor response of nickel oxide-doped tin dioxide thin films synthesized by SILAR method. J Mater Sci: Mater Electron 33, 11851–11863 (2022). https://doi.org/10.1007/s10854-022-08148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08148-2

Navigation