Skip to main content
Log in

Humidity sensing behaviour of Rubidium-doped Magnesium ferrite for sensor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, the influence of Rb3+ on the structural, microstructure, and humidity sensing properties of MgxRb1−xFe2O4 (x = 0.025 to 0.1) is reported. Samples were prepared by the self-propagating high temperature synthesis method. Structure is analogized through X-ray powder diffraction (XRD); microstructural and elemental composition via; Scanning Electron Microscopy (SEM) and Energy dispersive spectra (EDS), respectively. XRD patterns of all samples reveal the spinel cubic structure with single phase formation. The lattice parameters were found to decrease with an increase in Rb3+ concentration. Further estimated crystallite sizes were found in the nano range. Further estimated crystallite size range was found to be between 25 to 40 nm range. Changes in the distribution of grain and the rise in intergranular pores in the composite for adsorption of water are verified by electron SEM images. EDS was utilized to examine the elemental compositions of the prepared samples. Fourier Transform infrared Spectroscopy spectra shows two absorption bands, the high frequency band has a frequency range of 560–600 cm−1, whereas the low frequency band has a frequency range of 380–420 cm−1 which confirms the formation of spinel cubic structure. Mg0.9Rb0.1Fe2O4 displays a good sensing response. The composite response and recovery durations for Mg0.9Rb0.1Fe2O4 were 20 and 30 s, respectively. Chemisorption, physisorption, and capillary condensation methods were used to investigate the sensing process. For humidity, Mg0.9Rb0.1Fe2O4 samples showed steady sensing abilities and minimal hysteresis. Rb is a key component in boosting the humidity sensing effectiveness of Mg ferrite, making the composite ideal for use in humidity sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. The data that support the findings of this study are not openly available due to unpublished this work anywhere and are available from the corresponding author upon reasonable request.

References

  1. N. Rezlescu, E. Rezlescu, P.D. Popa, F. Tudorache, A model of humidity sensor with a mg-based ferrites. J. Optoelectron. Adv. Mater. 7, 907–910 (2005)

    CAS  Google Scholar 

  2. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14, 7881–7939 (2014)

    Article  Google Scholar 

  3. T.A. Blank, L.P. Eksperiandova, K.N. Belikova, Recent trends of ceramic humidity sensors development: a review. Sens. Actuators B Chem. 228, 416–442 (2016)

    Article  CAS  Google Scholar 

  4. C. Virlan, F. Tudorache, A. Pui, Tertiary NiCuZn ferrites for improved humidity sensors: a systematic study. Arab. J. Chem. 13, 2066–2075 (2020)

    Article  CAS  Google Scholar 

  5. N.N. Al-Rawi, B.A. Anwer, N.H. Al-Rawi, A.T. Uthman, I.S. Ahmed, Magnetism in drug delivery: the marvels of iron oxides and substituted ferrites nanoparticles. Saudi Pharm. J. 28, 876–887 (2020)

    Article  CAS  Google Scholar 

  6. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, S. Matteppanavar, N. Sivasankara Reddy, V. Jagadeesha Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci.: Mater. Electron. 30, 17202–17217 (2019)

    CAS  Google Scholar 

  7. H.R. Lakshmiprasanna, K. Manjunatha, J. Husain, Effect of cerium on structural, microstructural, magnetic and humidity sensing properties of Mn–Bi ferrites. Nano-Struct. Nano-Objects 24, 100608 (2020)

    Article  Google Scholar 

  8. V.J. Angadi, K. Manjunatha, K. Praveena, V.K. Pattar, B.J. Fernandes, S.O. Manjunatha, J. Husain, S.V. Angadi, L.D. Horakeri, K.P. Ramesh, Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method. J. Magn. Magn. Mater. 529, 167899 (2021)

    Article  Google Scholar 

  9. I.C. Sathisha, K. Manjunatha, V.J. Angadi, R.K. Reddy, Structural, microstructural, electrical, and magnetic properties of CuFe2-(x+y)EuxScyO4 (where x and y vary from 0 to 0.03) Nanoparticles. J. Supercond. Nov. Magn. 33, 3963–3973 (2020)

    Article  CAS  Google Scholar 

  10. K. Manjunatha, V. Jagadeesha-Angadi, K.M. Srinivasamurthy, S. Matteppanavar, V.K. Pattar, U. Mahaboob Pasha, Exploring the structural, dielectric and magnetic properties of 5 Mol% Bi3+-substituted CoCr2O4 nanoparticles. J. Supercond. Nov. Magn. 71, 1–12 (2020)

    Google Scholar 

  11. V. Jagadeesha Angadi, A.V. Anupama, R. Kumar, S. Matteppanavar, B. Rudraswamy, B. Sahoo, Observation of enhanced magnetic pinning in Sm3+ substituted nanocrystalline Mn-Zn ferrites prepared by propellant chemistry route. J. Alloys Compd. 682, 263–274 (2016)

    Article  CAS  Google Scholar 

  12. V. Jagadeesha Angadi, H.R. Lakshmiprasanna, K. Manjunatha, Investigation of Structural, Microstructural, Dielectrical and Magnetic Properties of Bi3+ Doped Manganese Spinel Ferrite Nanoparticles for Photonic Applications Bismuth - Fundamentals and Photonic Applications (IntechOpen, London, 2020)

    Google Scholar 

  13. P.D. Thang, G. Rijnders, D.H.A. Blank, Spinel cobalt ferrite by complexometric synthesis. J. Magn. Magn. Mater. 295, 251–256 (2005)

    Article  CAS  Google Scholar 

  14. R. Ali, A. Mahmood, M.A. Khan, A.H. Chughtai, M. Shahid, I. Shakir, M.F. Warsi, Impacts of Ni–Co substitution on the structural, magnetic and dielectric properties of magnesium nano-ferrites fabricated by micro-emulsion method. J. Alloys Compd. 584, 363–368 (2014)

    Article  CAS  Google Scholar 

  15. M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, New Mg0.5CoxZn0.5−xFe2O4 nano-ferrites: structural elucidation and electromagnetic behavior evaluation. Curr. Appl. Phys. 14, 716–720 (2014)

    Article  Google Scholar 

  16. B. Chethan, H.G. Raj Prakash, Y.T. Ravikiran, S.C. Vijaya Kumari, S. Manjunatha, S. Thomas, Humidity sensing performance of hybrid nanorods of polyaniline-Yttrium oxide composite prepared by mechanical mixing method. Talanta 215, 120906 (2020)

    Article  CAS  Google Scholar 

  17. B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C. Vijayakumari, S. Thomas, Polypyyrole based core-shell structured composite based humidity Sensor operable at room temperature. Sens. Actuators B Chem. 296, 126639 (2019)

    Article  CAS  Google Scholar 

  18. B. Chethan, H.G. Raj Prakash, Y.T. Ravikiran, S.C. Vijayakumari, C.H.V.V. Ramana, S. Thomas, D. Kim, Enhancing humidity sensing performance of polyaniline/water soluble graphene oxide composite. Talanta 196, 337 (2019)

    Article  CAS  Google Scholar 

  19. S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Room temperature humidity sensor based on polyaniline-tungsten disulfide composite. AIP Conf. Proc. 1953, 030096 (2018)

    Article  Google Scholar 

  20. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, V. Jagadeesh Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuators A Phys. 304, 111903 (2020)

    Article  CAS  Google Scholar 

  21. A. Sunilkumar, S. Manjunatha, T. Machappa, B. Chethan, Y.T. Ravikiran, A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull. Mater. Sci. 42, 1–5 (2019)

    Article  CAS  Google Scholar 

  22. A. Sunilkumar, S. Manjunatha, B. Chethan, Y.T. Ravikiran, T. Machappa, Polypyrrole-Tantalum disulfide composite: an efficient material for fabrication of room temperature operable humidity sensor. Sens. Actuators A Phys. 298, 111593 (2019)

    Article  CAS  Google Scholar 

  23. Y. Li, K. Fan, H. Ban, M. Yang, Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors. Sens. Actuators B Chem. 222, 151–158 (2016)

    Article  CAS  Google Scholar 

  24. S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Polyaniline based stable humidity sensor operable at room temperature. Phys. B Condens. Matter. 561, 170 (2019)

    Article  CAS  Google Scholar 

  25. R.M.Y.T. Ravikiran, B.C.H.G. Raj, P.S.C. Vijaya, K.S. Thomas, Effect of mechanical mixing method of preparation of polyaniline- transition metal oxide composites on DC conductivity and humidity sensing response. J. Mater. Sci. Mater. Electron. 29, 2–10 (2018)

    Google Scholar 

  26. D. Zhang, D. Wang, P. Li, X. Zhou, X. Zong, G. Dong, Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sens. Actuators B Chem. 255, 1869–1877 (2018)

    Article  CAS  Google Scholar 

  27. J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Significant increase in humidity sensing characteristics of praseodymium doped magnesium ferrite. Sens. Actuators A. Phys. 167, 332–337 (2011). https://doi.org/10.1016/j.sna.2011.03.010

    Article  CAS  Google Scholar 

  28. R.K. Kotnala, J. Shah, B. Singh, S. Singh, S.K. Dhawan, A. Sengupta, Humidity response of Li-substituted magnesium ferrite. Sens. Actuators B Chem. 129, 909–914 (2008). https://doi.org/10.1016/j.snb.2007.10.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University, Saudi Arabia, for funding this work under the Grant Number KKU/RCAMS/G012-21. Also, the authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, for funding this research work through the project number: (IFP-KKU-2020/9).

Author information

Authors and Affiliations

Authors

Contributions

VGH: Conceptualization, Methodology, Software and writing. ISY: revision of Data curation, Writing-Original draft preparation, HYZ: revision Analysis of Humidity Sensing data. CB: Analysis and Humidity sensing measurement. GHM: Reviewing manuscript. YTR: Measurements of Humidity sensing. VJA: Conceptualization, Reviewing and Editing.

Corresponding author

Correspondence to V. Jagadeesha Angadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremath, V.G., Yahia, I.S., Zahran, H.Y. et al. Humidity sensing behaviour of Rubidium-doped Magnesium ferrite for sensor applications. J Mater Sci: Mater Electron 33, 11591–11600 (2022). https://doi.org/10.1007/s10854-022-08131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08131-x

Navigation