Skip to main content

Advertisement

Log in

One-pot synthesis of Mn-doped goethite composite for enhanced supercapacitor performance and charge storage mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simplistic synthesis of Mn & Fe (manganese & iron)-based composites with high surface area for energy storage application is presented here. We have successfully synthesized Mn-doped iron oxide composite through co-precipitation method. Nanorod-shaped particles with high surface area is formed with uniform distribution of Fe, Mn, & O. The nanocomposite is then used as electrodes in supercapacitor study. The obtained nanostructures have less than 100 nm particle size with surface area of 153 m2 g−1. The composite exhibits high specific capacitance of ~ 387.9 F g−1 at 2.5 A g−1 current density with corresponding specific power density of 1250 W kg−1 and energy density of ~ 146 Wh kg−1. Further the electrode materials were also demonstrated using Trasatti and Dunn’s method revealing the diffusion-controlled storage process as being dominant in the contribution towards the total capacitance for the supercapacitor. The results indicate that Mn-doped iron oxide nanorods have great potential as energy storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Nguyen, M.F. Montemor, Adv. Sci. 6, 1801797 (2019). https://doi.org/10.1002/advs.201801797

    Article  CAS  Google Scholar 

  2. F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang, L. Fu, Y. Zhu, Q. Zhou, Y. Wu, W. Huang, Chem. Soc. Rev. 46, 6816–6854 (2017). https://doi.org/10.1039/C7CS00205J

    Article  CAS  Google Scholar 

  3. F. Shi, L. Li, X.L. Wang, C.D. Gu, J.P. Tu, RSC Adv. 4, 41910–41921 (2014). https://doi.org/10.1039/C4RA06136E

    Article  CAS  Google Scholar 

  4. P.K. Panda, A. Grigoriev, Y.K. Mishra, R. Ahuja, Nanoscale Adv. 2, 70–108 (2020). https://doi.org/10.1039/C9NA00307J

    Article  Google Scholar 

  5. R.B. Rakhi, W. Chen, D. Cha, H.N. Alshareef, J. Mater, Chem 21, 16197–16204 (2011). https://doi.org/10.1039/C1JM12963E

    Article  CAS  Google Scholar 

  6. V. Sharma, I. Singh, A. Chandra, Sci. Rep. 8, 1307–1318 (2018). https://doi.org/10.1038/s41598-018-19815-y

    Article  CAS  Google Scholar 

  7. M. Vangari, T. Pryor, L. Jiang, J Energy Eng. 139, 72–79 (2013). https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  8. X. Chen, R. Paul, L. Dai, Natl. Sci. Rev. 4, 453–489 (2017). https://doi.org/10.1093/nsr/nwx009

    Article  CAS  Google Scholar 

  9. Z. Wu, Y. Zhu, X. Ji, C.E. Banks, K. I. Ozoemena, S. Chen (eds), Springer, 317–344 (2016). https://doi.org/10.1007/978-3-319-26082-2.

  10. Y. Hu, J. Zhang, D. Wang, J. Sun, L. Zhang, Y. Liu, S. Gao, Y. Cui, Particuology 45, 66–73 (2019). https://doi.org/10.1016/j.partic.2018.07.008

    Article  CAS  Google Scholar 

  11. R. Barik, B.K. Jena, A. Dash, M. Mohapatra, RSC Adv. 4(36), 18827–18834 (2014). https://doi.org/10.1039/C4RA01258E

    Article  CAS  Google Scholar 

  12. R. Barik, M. Mohapatra, Cryst. Eng. Comm. 17, 9203–9215 (2015). https://doi.org/10.1039/C5CE01369K

    Article  CAS  Google Scholar 

  13. R. Barik, N. Moghimi, K.T. Leung, M. Mohapatra, Ionics 25, 1793–1803 (2019). https://doi.org/10.1007/s11581-018-2625-0

    Article  CAS  Google Scholar 

  14. C. An, Y. Zhang, H. Guo, Y. Wang, Nanoscale Adv. 1, 4644–4658 (2019). https://doi.org/10.1002/cnma.201600110

    Article  CAS  Google Scholar 

  15. K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, L. Mai, Nat. Commun. 8, 14264 (2017). https://doi.org/10.1038/ncomms14264

    Article  Google Scholar 

  16. M.A. Scibioh, B. Viswanathan, Materials for Supercapacitor Applications (2020). https://doi.org/10.1016/B978-0-12-819858-2.00006-8

    Article  Google Scholar 

  17. Y. Zhai, X. Ma, H. Mao, W. Shao, L. Xu, Y. He, Y. Qian, Adv. Electron. Mater. 1(6), 1400057 (2015). https://doi.org/10.1002/aelm.201400057

    Article  CAS  Google Scholar 

  18. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, H. Fan, Angew. Chem. 49(45), 8431–8434 (2010). https://doi.org/10.1002/anie.201001581

    Article  CAS  Google Scholar 

  19. R. Barik, B.K. Jena, M. Mohapatra, RSC Adv. 7, 49083–49090 (2017). https://doi.org/10.1039/C7RA06731C

    Article  CAS  Google Scholar 

  20. D. Cai, J. Du, C. Zhu, Q. Cao, L. Huang, J. Wu, D. Zhou, Q. Xia, T. Chen, C. Guan, Y. Xia, A.C.S. Appl, Energy Mater. 3, 12162–12171 (2020). https://doi.org/10.1021/acsaem.0c02238

    Article  CAS  Google Scholar 

  21. H.R. Barai, N.S. Lopa, F. Ahmed, N.A. Khan, S.A. Ansari, S.W. Joo, Md.M. Rahman, ACS Omega 5, 22356–22366 (2020). https://doi.org/10.1021/acsomega.0c02740

    Article  CAS  Google Scholar 

  22. R. Kumar, A. Agrawal, R.K. Nagarale, A. Sharma, J. Phys. Chem. C 120, 3107–3116 (2016). https://doi.org/10.1021/acs.jpcc.5b09062

    Article  CAS  Google Scholar 

  23. T. Xing, Y. Ouyanga, Y. Chen, L. Zheng, C. Wu, X. Wang, J Energy Storage 28, 101248 (2020). https://doi.org/10.1016/j.est.2020.101248

    Article  Google Scholar 

  24. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C.P. Grey, B. Dunn, P. Simon, Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70

    Article  CAS  Google Scholar 

  25. Y. Zhai, L. Xu, Y. Qian, J Power Sources 327, 423–431 (2016). https://doi.org/10.1016/j.jowsour.2016.07.051

    Article  CAS  Google Scholar 

  26. J. Zhang, Y. Wang, H.-J. Liao, T.-Y. Yang, Z. Chen, X. Yan, Z. Zhou, H. lv, W.-W. Liu, Y.-L. Chu, Materials Energy Today 17, 1003 (2020). https://doi.org/10.1016/j.mtener.2020.100388

    Article  Google Scholar 

  27. L. Zhu, Z. Chang, Y. Wang, B. Chen, Y. Zhu, W. Tang, Y. Wu, J. Mater. Chem. A 3, 22066–22072 (2015). https://doi.org/10.1039/c5ta05556c

    Article  CAS  Google Scholar 

  28. P. Yang, Y. Ding, Z. Lin, Z. Chen, Y. Li, P. Qiang, M. Ebrahimi, W. Mai, C.P. Wong, Z.L. Wang, Nano Lett. 14, 731–736 (2014). https://doi.org/10.1021/nl404008e

    Article  CAS  Google Scholar 

  29. R. Kumara, S.M. Youssry, K.Z. Ya, W.K. Tan, G. Kawamura, A. Matsuda, Diam. Relat. Mater. 101, 107622 (2020). https://doi.org/10.1016/j.diamond.2019.107622

    Article  CAS  Google Scholar 

  30. B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, R.K. Guduru, R. Yuvakkumar, Mater. Res. Express 5, 015504 (2018). https://doi.org/10.1088/2053-1591/aaa3b1

    Article  CAS  Google Scholar 

  31. G. Zhao, J. Li, X. Niu, K. Tang, S. Wang, W. Zhu, X. Ma, M. Ru, Y. Yang, New J. Chem. 40, 3491–3498 (2016). https://doi.org/10.1039/C5NJ03694A

    Article  CAS  Google Scholar 

  32. H. Yang, X. Mao, Y. Guo, D. Wang, G. Ge, R. Yang, X. Qiu, Y. Yang, C. Wang, Y. Wang, G. Liu, Cryst. Eng. Comm. 12, 1842–1849 (2010). https://doi.org/10.1039/B921618A

    Article  CAS  Google Scholar 

  33. M. Yang, X. Ren, L. Hu, W. Guo, J. Zhan, Chem. Eng. J. 412, 128628 (2021). https://doi.org/10.1016/j.cej.2021.128628

    Article  CAS  Google Scholar 

  34. R. Zamiri, H.A. Ahangar, A. Zakaria, G. Zamiri, H.R. Bahari, G.P.C. Drummen, J Nanopart Res 16, 2333 (2014). https://doi.org/10.1007/s11051-014-2333-2

    Article  CAS  Google Scholar 

  35. X. Jiang, Y. Wang, T. Herricks, Y. Xia, J. Mater. Chem. 14, 695–703 (2004). https://doi.org/10.1039/B313938G

    Article  CAS  Google Scholar 

  36. M.R. Parra, F.Z. Haque, Optik 126, 1562–1566 (2015). https://doi.org/10.1016/j.ijleo.2015.05.011

    Article  CAS  Google Scholar 

  37. C. Hai, S. Li, Y. Zhou, J. Zeng, X. Ren, X. Li, J. Asian Ceram. Soc. 5(2), 176–182 (2017). https://doi.org/10.1016/j.jascer.2017.04.004

    Article  Google Scholar 

  38. N.T.K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 114(15), 7610–7630 (2014). https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  39. Y. Hu, Q. Yang, Y. Gu, Plas One 16(2), e0246386 (2021). https://doi.org/10.1371/journal.pone.0246386F

    Article  CAS  Google Scholar 

  40. Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C.M.B. Holt, X. Tan, D. Mitlin, Energy Environ. Sci. 7, 1708–1718 (2014). https://doi.org/10.1039/C3EE43979H

    Article  CAS  Google Scholar 

  41. X. Fei, Z. Shao, X. Chen, J. Mater. Chem. B 1, 213–220 (2013). https://doi.org/10.1039/C3NR01872E

    Article  CAS  Google Scholar 

  42. L. Ferretto, A. Glisenti, J Mol Catal A-Chem. 187, 119–128 (2002). https://doi.org/10.1016/S1381-1169(02)00126-7

    Article  CAS  Google Scholar 

  43. S. Jain, J. Shah, N.S. Negi, C. Sharma, R.K. Kotnala, Int. J Energy Res. 43, 4743–4755 (2019). https://doi.org/10.1002/er.4613

    Article  CAS  Google Scholar 

  44. L.Q. Wu, Y.C. Li, S.Q. Li, Z.Z. Li, G.D. Tang, W.H. Qi, L.C. Xue, X.S. Ge, L.L. Ding, AIP Adv. 5, 097210 (2015). https://doi.org/10.1063/1.4931996

    Article  CAS  Google Scholar 

  45. Y.M. Hao, S.Y. Lou, S.M. Zhou, R.J. Yuan, G.Y. Zhu, N. Li, Nanoscale Res. Lett. 7, 100–109 (2012). https://doi.org/10.1186/1556-276X-7-100

    Article  CAS  Google Scholar 

  46. F. Li, L. Zhang, D.G. Evans, X. Duan, Colloids Surf. A Physicochem. Eng. Asp 244, 169–177 (2004). https://doi.org/10.1016/j.colsurfa.2004.06.022

    Article  CAS  Google Scholar 

  47. M. Shatnawi, A. M. Alsmadi, I. Bsoul, B. Salameh, M. Mathai, G. Alnawashi, G. M.Alzoubi, F. Al-Dweri, M. S. Bawa’aneh (2016) Results Phys 6: 1064–1071 Doi: https://doi.org/10.1016/j.rinp.2016.11.041.

  48. T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, J. Am, Chem. Soc. 131(5), 1802–1809 (2009). https://doi.org/10.1021/ja8057309

    Article  CAS  Google Scholar 

  49. T.C. Liu, W.G. Pell, B.E. Conway, S.L. Roberson, J. Electrochem, Soc. 145(6), 1882 (1998). https://doi.org/10.1149/1.1838571

    Article  CAS  Google Scholar 

  50. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Adv. sci. 5(1), 1700322 (2018). https://doi.org/10.1002/advs.201700322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RB is thankful to DST Inspire Division (Govt. of India) for Inspire Fellowship.

Funding

The authors are thankful to Ministry of Science and Technology, Department of Science and Technology, India and CSIR-Institute of Minerals and Materials Technology, Bhubaneswar Odisha for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, experiments, electrochemical analysis, and writing are done by RB. BKS helped in carrying out electrochemical analysis. ANN revised the manuscript. Conceptualization, methodology, and writing are done by MM. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mamata Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, R., Satpathy, B.K., Nikoloski, A.N. et al. One-pot synthesis of Mn-doped goethite composite for enhanced supercapacitor performance and charge storage mechanism. J Mater Sci: Mater Electron 33, 11661–11675 (2022). https://doi.org/10.1007/s10854-022-08123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08123-x

Navigation