Skip to main content
Log in

Unraveling the phonon scattering mechanism in exfoliated MoSe2 nanosheets using temperature-dependent Raman spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The liquid exfoliation method is employed to prepare MoSe2 nanosheets onto silicon (Si) substrates. The vibrational characteristics of MoSe2 nanosheets are elucidated by performing the Raman measurements over the temperature range from 81 to 300 K with a 473 nm laser. The formation of a few monolayer MoSe2 nanosheets is confirmed by XRD, TEM, and XPS before proceeding for temperature-dependent Raman studies. Our experimental investigations demonstrate that the proliferation in temperature brings about a redshift in A1g (out-of-plane) and E12g (in-plane) Raman modes. The obtained values of the first-order temperature coefficients for A1g and E12g modes are − 0.05279 ± 0.00606 cm−1 K−1 and − 0.07069 ± 0.00769 cm−1 K−1, respectively. We also observed that the Raman shift for both A1g and E12g modes has non-linear temperature dependence. To gain a better perspective regarding the observed nonlinear dependence, a physical model is invoked. Our analytical results indicate that three- and four- phonon anharmonic effects are responsible for the non-linear temperature dependence of Raman modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article.

References

  1. S.K. Balasingam, J.S. Lee, Y. Jun, Dalt. Trans. 44, 15491 (2015)

    Article  CAS  Google Scholar 

  2. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, ACS Nano 7, 2898 (2013)

    Article  CAS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  CAS  Google Scholar 

  4. G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, J.A. Robinson, ACS Nano 9, 11509 (2015)

    Article  CAS  Google Scholar 

  5. D.A. Abanin, K.S. Novoselov, U. Zeitler, P.A. Lee, A.K. Geim, L.S. Levitov, Phys. Rev. Lett. 98, 196806 (2007)

    Article  Google Scholar 

  6. S.J. Li, Y. Xing, G.F. Wang, Microchim. Acta 176, 163 (2012)

    Article  CAS  Google Scholar 

  7. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekær, Nat. Mater. 9, 315 (2010)

    Article  CAS  Google Scholar 

  8. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, N. Marzari, Nat. Nanotechnol. 13, 246 (2018)

    Article  CAS  Google Scholar 

  9. M. Chhowalla, Z. Liu, H. Zhang, Chem. Soc. Rev. 44, 2584 (2015)

    Article  CAS  Google Scholar 

  10. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 2 (2010)

    Article  Google Scholar 

  11. M. Timpel, G. Ligorio, A. Ghiami, L. Gavioli, E. Cavaliere, A. Chiappini, F. Rossi, L. Pasquali, F. Gärisch, E. J. W. List-Kratochvil, P. Nozar, A. Quaranta, R. Verucchi, M. V. Nardi, Npj 2D Mater. Appl. 5, (2021)

  12. D. Li, C. Trovatello, S. Dal Conte, M. Nuß, G. Soavi, G. Wang, A.C. Ferrari, G. Cerullo, T. Brixner, Nat. Commun. 12, 1 (2021)

    Article  Google Scholar 

  13. W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013)

    Article  Google Scholar 

  14. M. Tsai, S. Su, J. Chang, D. Tsai, C. Chen, C. Wu, L. Li, L. Chen, J. He, M. Science, E. Engineering, M. Sciences, M. Sciences, S. Arabia, ACS Nano 8, 8317 (2014)

    Article  CAS  Google Scholar 

  15. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012)

    Article  CAS  Google Scholar 

  16. Rahul, H. Singh, N.P. Lalla, U. Deshpande, S.K. Arora, Mater. Today Proc. 45, 4787 (2021)

    Article  CAS  Google Scholar 

  17. Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y.D. Kim, A.M. van der Zande, A. Rigosi, H.M. Hill, S.H. Kim, J. Hone, Z. Li, D. Smirnov, T.F. Heinz, Phys. Rev. Lett. 113, 266804 (2014)

    Article  Google Scholar 

  18. S. Najmaei, P.M. Ajayan, J. Lou, Nanoscale 5, 9758 (2013)

    Article  CAS  Google Scholar 

  19. Q.D. Truong, M. Kempaiah Devaraju, Y. Nakayasu, N. Tamura, Y. Sasaki, T. Tomai, I. Honma, ACS Omega 2, 2360 (2017)

    Article  CAS  Google Scholar 

  20. H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M. Y. Li, L. J. Li, Appl. Phys. Lett. 105, (2014)

  21. V. Sunidhi, S.K. Sharma, F. Arora, V.S. Sánchez, Solid State Commun. 321, 114038 (2020)

    Article  CAS  Google Scholar 

  22. S.H. El-Mahalawy, B.L. Evans, J.J. Thomson, J. Appl. Cryst 9, 403 (1976)

    Article  Google Scholar 

  23. T. M, D. J. Late, ACS Appl. Mater. Interfaces 6, 1158 (2014)

  24. Z. Li, Y. Wang, J. Jiang, Y. Liang, B. Zhong, H. Zhang, K. Yu, G. Kan, M. Zou, Nano Res. 13, 591 (2020)

    Article  CAS  Google Scholar 

  25. D.J. Late, S.N. Shirodkar, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, ChemPhysChem 15, 1592 (2014)

    Article  CAS  Google Scholar 

  26. T. Yang, X. Huang, H. Zhou, G. Wu, T. Lai, Opt. Express 24, 12281 (2016)

    Article  CAS  Google Scholar 

  27. T. C. V. Carvalho, F. D. V. Araujo, C. Costa Dos Santos, L. M. R. Alencar, J. Ribeiro-Soares, D. J. Late, A. O. Lobo, A. G. Souza Filho, R. S. Alencar, B. C. Viana, AIP Adv. 9, (2019)

  28. Rahul, S.K. Arora, J. Electron. Mater. 50, 7126 (2021)

    Article  CAS  Google Scholar 

  29. S. Sinha, V. Sathe, S.K. Arora, Solid State Commun. 298, 113626 (2019)

    Article  CAS  Google Scholar 

  30. X. Huang, Y. Gao, T. Yang, W. Ren, H.-M. Cheng, T. Lai, Sci. Rep. 6, 32236 (2016)

    Article  CAS  Google Scholar 

  31. A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Nanoscale 8, 3008 (2016)

    Article  CAS  Google Scholar 

  32. M. Yang, X. Cheng, Y. Li, Y. Ren, M. Liu, Z. Qi, Appl. Phys. Lett. 110, 093108 (2017)

    Article  Google Scholar 

  33. Rahul, S. Kumar Arora, Mater. Today Proc. 54, 728 (2022)

    Article  CAS  Google Scholar 

  34. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  CAS  Google Scholar 

  35. M. C. Larasati Dion, V. Fauzia, C. Imawan, J. Phys. Conf. Ser. 1951, (2021)

  36. L. Yuwen, J. Zhou, Y. Zhang, Q. Zhang, J. Shan, Z. Luo, L. Weng, Z. Teng, L. Wang, Nanoscale 8, 2720 (2016)

    Article  CAS  Google Scholar 

  37. Y. Zhao, H. Lee, W. Choi, W. Fei, C.J. Lee, RSC Adv. 7, 27969 (2017)

    Article  CAS  Google Scholar 

  38. A. Roy, H.C.P. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik, S. Guchhait, E. Tutuc, S.K. Banerjee, A.C.S. Appl, Mater. Interfaces 8, 7396 (2016)

    Article  CAS  Google Scholar 

  39. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, Opt. Express 21, 4908 (2013)

    Article  CAS  Google Scholar 

  40. J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang, B. Huang, D.-D. Zhu, J.-J. Li, C.-Z. Gu, X.-M. Meng, Nanoscale 6, 8949 (2014)

    Article  CAS  Google Scholar 

  41. D. Nam, J.-U. Lee, H. Cheong, Sci. Rep. 5, 17113 (2015)

    Article  CAS  Google Scholar 

  42. N. Dilawar Sharma, J. Singh, A. Vijay, K. Samanta, S.D. Pandey, J. Raman Spectrosc. 48, 822 (2017)

    Article  CAS  Google Scholar 

  43. S.V. Bhatt, M.P. Deshpande, V. Sathe, R. Rao, S.H. Chaki, J. Raman Spectrosc. 45, 971 (2014)

    Article  CAS  Google Scholar 

  44. X. Zhang, D. Sun, Y. Li, G.H. Lee, X. Cui, D. Chenet, Y. You, T.F. Heinz, J.C. Hone, A.C.S. Appl, Mater. Interfaces 7, 25923 (2015)

    Article  CAS  Google Scholar 

  45. D. Sun, S. Feng, M. Terrones, R.E. Schaak, Chem. Mater. 27, 3167 (2015)

    Article  CAS  Google Scholar 

  46. P.G. Klemens, Phys. Rev. B 11, 3206 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank PURSE-II for providing financial and technical support for this research work. One of the authors Mr. Rahul acknowledges the Department of Science and Technology, India for providing funding support under the INSPIRE program (IF170759). The authors are highly grateful to Dr. Uday Deshpande (Scientist-E, XPS lab) and Dr. N.P. Lalla (Scientist-H, TEM lab) UGC-DAE CSR Indore for XPS and TEM measurements. The authors also offer special gratitude to SAIF, Panjab University, Chandigarh for their technical support. The author acknowledges Mr. Inderpal Singh for XPS analysis.

Funding

The funded was provided by Ministry of Science and Technology, Department of Science and Technology India, Grant No (IF170759).

Author information

Authors and Affiliations

Authors

Contributions

R: conceptualization, methodology, formal analysis, software, writing—original draft, review and editing. SKA: conceptualization, visualization, reviewing. VS: data curation and reviewing.

Corresponding author

Correspondence to Rahul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, Arora, S.K. & Sathe, V.G. Unraveling the phonon scattering mechanism in exfoliated MoSe2 nanosheets using temperature-dependent Raman spectroscopy. J Mater Sci: Mater Electron 33, 23964–23973 (2022). https://doi.org/10.1007/s10854-022-08074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08074-3

Navigation