Skip to main content
Log in

Raman spectral studies on phonon softening, surface temperature, fano resonance, and phase change in MoS2 nanoflakes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A laser power-dependent Raman spectroscopic study has been done to explore the phonon shift, electron–phonon coupling, phase change, and surface temperature in hydrothermally prepared bulk 2H-MoS2 nanoflakes with two different laser excitation wavelengths, i.e., 532 nm and 488 nm. The phonon softening and asymmetry in the vibrational modes are attributed to the laser-induced heating and Fano resonance, respectively. Fano resonance happens due to electron–phonon coupling and appears as an asymmetry in the Raman line shape. The fundamental vibrational phonon modes which show asymmetry are fitted using the Fano line shape function, and the laser power-dependent electron–phonon coupling changes are systematically studied. The asymmetry factor for \({E}_{2g}^{1}\) and \({A}_{1g}\) modes gave negative and positive values, respectively. The laser-induced surface temperature of the material is calculated using Stokes/anti-Stokes method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

References

  1. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    ADS  Google Scholar 

  2. H. Mishra, A. Bose, A. Dhar, S. Bhattacharya, Phys. Rev. B 98, 045143 (2018)

    ADS  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    ADS  Google Scholar 

  4. S. Lebègue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)

    ADS  Google Scholar 

  5. T. Li, G. Galli, J. Phys. Chem. C 111, 16192 (2007)

    Google Scholar 

  6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    ADS  Google Scholar 

  7. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013)

    Google Scholar 

  8. A. Pelella, A. Grillo, F. Urban, F. Giubileo, M. Passacantando, E. Pollmann, S. Sleziona, M. Schleberger, A. Di Bartolomeo, Adv. Electron. Mater. 7, 2000838 (2021)

    Google Scholar 

  9. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Nano Lett. 12, 4674 (2012)

    ADS  Google Scholar 

  10. S. Wi, H. Kim, M. Chen, H. Nam, L.J. Guo, E. Meyhofer, X. Liang, ACS Nano 8, 5270 (2014)

    ADS  Google Scholar 

  11. Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Small 8, 2994 (2012)

    Google Scholar 

  12. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D.W.H. Fam, A.I.Y. Tok, Q. Zhang, H. Zhang, Small 8, 63 (2012)

    Google Scholar 

  13. X. Zhou, L.-J. Wan, Y.-G. Guo, Chem. Commun. 49, 1838 (2013)

    Google Scholar 

  14. Y. Liang, R. Feng, S. Yang, H. Ma, J. Liang, J. Chen, Adv. Mater. 23, 640 (2011)

    Google Scholar 

  15. A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Nano Lett. 12, 3187 (2012)

    ADS  Google Scholar 

  16. J. Lu, J.H. Lu, H. Liu, B. Liu, K.X. Chan, J. Lin, W. Chen, K.P. Loh, C.H. Sow, ACS Nano 8, 6334 (2014)

    Google Scholar 

  17. E. Gu, Q. Wang, Y. Zhang, C. Cong, L. Hu, P. Tian, R. Liu, S.-L.L. Zhang, Z.-J.J. Qiu, AIP Adv. 7, 125329 (2017)

    ADS  Google Scholar 

  18. X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou, Q. Xiong, Nano Lett. 14, 2419 (2014)

    ADS  Google Scholar 

  19. Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui, Z. Liu, ACS Nano 7, 8963 (2013)

    Google Scholar 

  20. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)

    Google Scholar 

  21. A. Sunny, A. Thirumurugan, K. Balasubramanian, Phys. Chem. Chem. Phys. 22, 2001 (2020)

    Google Scholar 

  22. X. Zhang, S. Choi, D. Wang, C.H. Naylor, A.T.C.C. Johnson, E. Cubukcu, Nano Lett. 17, 6715 (2017)

    ADS  Google Scholar 

  23. X.X. Zhang, N. Biekert, S. Choi, C.H. Naylor, C. De-Eknamkul, W. Huang, X.X. Zhang, X. Zheng, D. Wang, A.T.C.C. Johnson, E. Cubukcu, Nano Lett. 18, 957 (2018)

    ADS  Google Scholar 

  24. M. Chinnasamy, K. Balasubramanian, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 199, 322 (2018)

    ADS  Google Scholar 

  25. B. Lee, J. Park, G.H. Han, Ee H-SS, Naylor CH, Liu W, Johnson ATTCC, Agarwal R. Nano Lett. 15, 3646 (2015)

    ADS  Google Scholar 

  26. B.G. Burke, J. Chan, K.A. Williams, Z. Wu, A.A. Puretzky, D.B. Geohegan, J. Raman Spectrosc. 41, 1759 (2010)

    ADS  Google Scholar 

  27. M. Tanwar, D.K. Pathak, C. Rani, S. Kandpal, T. Ghosh, P. Mondal, A. Chaudhary, R. Kumar, J. Phys. Chem. C 125, 12767 (2021)

    Google Scholar 

  28. D.P. Rai, T.V. Vu, A. Laref, M.A. Hossain, E. Haque, S. Ahmad, R. Khenata, R.K. Thapa, RSC Adv. 10, 18830 (2020)

    ADS  Google Scholar 

  29. Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim, S. Shi, J. Wu, A. Zettl, F. Wang, Nano Lett. 14, 5329 (2014)

    ADS  Google Scholar 

  30. Q. Ding, F. Meng, C.R. English, M. Cabán-Acevedo, M.J. Shearer, D. Liang, A.S. Daniel, R.J. Hamers, S. Jin, J. Am. Chem. Soc. 136, 8504 (2014)

    Google Scholar 

  31. S. Jiménez Sandoval, D. Yang, R.F. Frindt, J.C. Irwin, Phys. Rev. B 44, 3955 (1991)

    ADS  Google Scholar 

  32. P. Yogi, S.K. Saxena, S. Mishra, H.M. Rai, R. Late, V. Kumar, B. Joshi, P.R. Sagdeo, R. Kumar, Solid State Commun. 230, 25 (2016)

    ADS  Google Scholar 

  33. S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, Appl. Phys. Lett. 100, 013106 (2012)

    ADS  Google Scholar 

  34. C. Tessarek, O. Gridenco, M. Wiesing, J. Müssener, S. Figge, K. Sebald, J. Gutowski, M. Eickhoff, A.C.S. Appl, Nano Mater. 3, 7490 (2020)

    Google Scholar 

  35. R. Rao, R.A. Yadav, N. Padma, S. Jagannath, A. Arvind, J. Appl. Phys. 128, 165703 (2020)

    ADS  Google Scholar 

  36. S. Phadungdhitidhada, P. Mangkorntong, S. Choopun, N. Mangkorntong, Ceram. Int. 34, 1121 (2008)

    Google Scholar 

  37. Y. Li, C. Yu, Y. Gan, P. Jiang, J. Yu, Y. Ou, D.-F. Zou, C. Huang, J. Wang, T. Jia, Q. Luo, X.-F. Yu, H. Zhao, C.-F. Gao, J. Li, Npj Comput. Mater. 4, 49 (2018)

    ADS  Google Scholar 

  38. S. Banerjee, D.-I. Kim, R.D. Robinson, I.P. Herman, Y. Mao, S.S. Wong, Appl. Phys. Lett. 89, 223130 (2006)

    ADS  Google Scholar 

  39. P. Yogi, S. Mishra, S.K. Saxena, V. Kumar, R. Kumar, J. Phys. Chem. Lett. 7, 5291 (2016)

    Google Scholar 

  40. M. Gupta, A. Kumar, A. Sagdeo, P.R. Sagdeo, J. Phys. Chem. C 125, 2648 (2021)

    Google Scholar 

  41. K.W. Adu, H.R. Gutiérrez, U.J. Kim, P.C. Eklund, Phys. Rev. B 73, 155333 (2006)

    ADS  Google Scholar 

  42. H.-N. Liu, X. Cong, M.-L. Lin, P.-H. Tan, Carbon N. Y. 152, 451 (2019)

    Google Scholar 

  43. R.C. Maher, L.F. Cohen, E.C. Le Ru, P.G. Etchegoin, Faraday Discuss. 132, 77 (2006)

    ADS  Google Scholar 

  44. T.R. Hart, R.L. Aggarwal, B. Lax, Phys. Rev. B 1, 638 (1970)

    ADS  Google Scholar 

  45. B. Huang, Y. Tian, Z. Li, S. Gao, Z. Li, Instrum. Exp. Tech. 50, 282 (2007)

    Google Scholar 

  46. N. Orlovskaya, D. Steinmetz, S. Yarmolenko, D. Pai, J. Sankar, J. Goodenough, Phys. Rev. B 72, 014122 (2005)

    ADS  Google Scholar 

  47. A. Jagminas, G. Niaura, R. Žalnėravičius, R. Trusovas, G. Račiukaitis, V. Jasulaitiene, Sci. Rep. 6, 37514 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

S.B. acknowledges UGC, Govt. of India, for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 543 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susmitha, B., Arjun, K. & Karthikeyan, B. Raman spectral studies on phonon softening, surface temperature, fano resonance, and phase change in MoS2 nanoflakes. Appl. Phys. A 129, 309 (2023). https://doi.org/10.1007/s00339-023-06590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06590-5

Keywords

Navigation