Skip to main content
Log in

Ag-CuO/rGO/PVDF nanocomposite synthesized via simple method as a broadband non-linear optical material for optronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag-CuO/rGO nanoparticles were synthesized successfully using the low-cost co-precipitation method. The obtained nanoparticles were characterized to be used as a special filler of the PVDF polymer in different concentrations [1, 1.5, 2, 2.5]%wt. The Ag-CuO/rGO/PVDF composite was characterized and optically investigated. The optical and non-linear optical properties of the Ag-CuO/rGO/PVDF composite were superior in that it outperformed many of recently published works that discussed PVDF composites’ optical parameters values and compete for these values with lower ratios of the used nanoparticles. The Ag-CuO/rGO nanoparticles enhanced the absorption coefficient, refractive index, optical conductivity, dielectric constant, and the non-linear optical parameters intensities of the PVDF polymer. This enhancement occurred in a broad-spectrum range from 235 to 800 nm. However, Ag-CuO/rGO nanoparticles reduce the optical band gap energy to be 1.9 eV with nanoparticles concentration of 2.5%wt. The obtained results strongly support the use of Ag-CuO/rGo/PVDF composite in optotronic devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. F. Adams, C. Barbante, Chemical Imaging Analysis (Elsevier, Amsterdam, 2015)

    Google Scholar 

  2. A.K. Batra, P. Guggilla, D. Cunningham, M.D. Aggarwal, R.B. Lal, Physica B 371, 210 (2006)

    Article  CAS  Google Scholar 

  3. A.J. Manoharan, Indian J. Sci. Technol. 4, 688 (2011)

    Article  Google Scholar 

  4. E.M. Abdelrazek, R. Holze, Physica B 406, 766 (2011)

    Article  CAS  Google Scholar 

  5. M. Ataur Rahman, G.-S. Chung, J. Alloys Compd. 581, 724 (2013)

    Article  CAS  Google Scholar 

  6. J.N. Martins, M. Kersch, V. Altstädt, R.V.B. Oliveira, Polym. Testing 32, 862 (2013)

    Article  CAS  Google Scholar 

  7. W. Groh, A. Zimmermann, Macromolecules 24, 6660 (1991)

    Article  CAS  Google Scholar 

  8. K.K. Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu, Thin Solid Films 322, 21 (1998)

    Article  CAS  Google Scholar 

  9. A.P. Indolia, M.S. Gaur, J. Polym. Res. (2012). https://doi.org/10.1007/s10965-012-0043-y

    Article  Google Scholar 

  10. S. Wageh, L. He, A.A. Al-Ghamdi, Y.A. Al-Turki, S.C. Tjong, RSC Adv. 4, 28426 (2014)

    Article  CAS  Google Scholar 

  11. S. Moharana, R.N. Mahaling, Chem. Phys. Lett. 680, 31 (2017)

    Article  CAS  Google Scholar 

  12. G. P, C. A, and P. R, Res. Rev. J. Mater. Sci. 05 (2017).

  13. Q.A. Alsulami, A. Rajeh, Results Phys. 28, 104675 (2021)

    Article  Google Scholar 

  14. S. Ishaq, F. Kanwal, S. Atiq, M. Moussa, U. Azhar, D. Losic, Materials 13, 205 (2020)

    Article  CAS  Google Scholar 

  15. A.A. Shaltout, N.Y. Mostafa, R.M. Mahani, S.I. Ahmed, M.A. Allam, E. Alzahrani, Z.K. Heiba, H.H. Wahba, J. Market. Res. 9, 14350 (2020)

    CAS  Google Scholar 

  16. L.H. Gaabour, Optics Photon. J. 10, 197 (2020)

    Article  CAS  Google Scholar 

  17. S. Moharana, R.N. Mahaling, J. Asian Ceram. Soc. 9, 1183 (2021)

    Article  Google Scholar 

  18. M.M. El-Masry, R. Ramadan, Appl. Phys. A (2022). https://doi.org/10.1007/s00339-021-05238-6

    Article  Google Scholar 

  19. I. A.-D. Ali Al-Saidi, H. Falih Hussein, and A. H. Kareem, Int. J. Eng. Appl. Sci. (IJEAS) (2019). https://doi.org/10.31873/IJEAS.6.9.25

  20. M.H. Kudus, M.R. Zakaria, H.M. Akil, F. Ullah, F. Javed, J. King Saud Univ. Sci. 32, 910 (2020)

    Article  Google Scholar 

  21. S.N. Alam, N. Sharma, L. Kumar, Graphene 06, 1 (2017)

    Article  CAS  Google Scholar 

  22. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci. Mater. Electron. 27, 1244 (2015)

    Article  Google Scholar 

  23. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv. Powder Technol. 28, 1258 (2017)

    Article  CAS  Google Scholar 

  24. R. Siburian, H. Sihotang, S. Lumban-Raja, M. Supeno, C. Simanjuntak, Orient. J. Chem. 34, 182 (2018)

    Article  CAS  Google Scholar 

  25. I.S. Elashmawi, N.H. Elsayed, F.A. Altalhi, J. Alloy. Compd. 617, 877 (2014)

    Article  CAS  Google Scholar 

  26. M. Li, H.J. Wondergem, M.-J. Spijkman, K. Asadi, I. Katsouras, P.W. Blom, D.M. de Leeuw, Nat. Mater. 12, 433 (2013)

    Article  CAS  Google Scholar 

  27. D.W. Roger, “The Debye Equation.” Einstein’s Other Theory (Princeton University Press, Princeton, 2020), pp. 77–93. https://doi.org/10.2307/j.ctv131bw9t.9.

  28. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  29. B.D. Cullity, J.W. Weymouth, Am. J. Phys. 25, 394 (1957)

    Article  Google Scholar 

  30. R.H. Devamani, M. Alagar, Nano. Biomed. Eng. (2013). https://doi.org/10.5101/nbe.v5i3.p116-120

    Article  Google Scholar 

  31. A. Augustin, K. R. Udupa, and U. B. K., in AIP Conference Proceedings (2016).

  32. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Optik 227, 165837 (2021)

    Article  CAS  Google Scholar 

  33. M.M. Alkhulaifi, J.H. Alshehri, M.A. Alwehaibi, M.A. Awad, N.M. Al-Enazi, N.S. Aldosari, A.A. Hatamleh, N. Abdel-Raouf, Saudi J. Biol. Sci. 27, 3434 (2020)

    Article  CAS  Google Scholar 

  34. E.H. Abdelhamid, O.D. Jayakumar, V. Kotari, B.P. Mandal, R. Rao, V.M. Naik, R. Naik, A.K. Tyagi, RSC Adv. 6, 20089 (2016)

    Article  CAS  Google Scholar 

  35. D.J. Bhagat, G.R. Dhokane, Mater. Lett. 136, 251 (2014)

    Article  CAS  Google Scholar 

  36. D.J. Bhagat, G.R. Dhokane, Electron. Mater. Lett. 11, 346 (2015)

    Article  CAS  Google Scholar 

  37. A.M. Ismail, M.I. Mohammed, S.S. Fouad, J. Mol. Struct. 1170, 51 (2018)

    Article  CAS  Google Scholar 

  38. M. D. Aggarwal, W. S. Wang, K. Bhat, B. G. Penn, and D. O. Frazier, Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 193 (Elsevier, 2001).

  39. AA Kokhanovsky, eds. Light Scattering Reviews, vol. 9. (Springer, Berlin, Heidelberg, 2015). https://doi.org/10.1007/978-3-642-37985-7

  40. S. Sarkar, P.K. Jana, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 89, 212905 (2006)

    Article  Google Scholar 

  41. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. 104, 2952 (2021)

    Article  CAS  Google Scholar 

  42. L.R. Buizza, A.D. Wright, G. Longo, H.C. Sansom, C.Q. Xia, M.J. Rosseinsky, M.B. Johnston, H.J. Snaith, L.M. Herz, ACS Energy Lett. 6, 1729 (2021)

    Article  CAS  Google Scholar 

  43. K. Klyukin, V. Alexandrov, Phys. Rev. B (2017). https://doi.org/10.1103/PhysRevB.95.035301

    Article  Google Scholar 

  44. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrogen Energy 44, 24005 (2019)

    Article  CAS  Google Scholar 

  45. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  46. N. Sharma, K. Prabakar, S. Ilango, S. Dash, A.K. Tyagi, Adv. Mater. Proc. 2, 342 (2021)

    Article  Google Scholar 

  47. Z. Noori, M. Panjepour, M. Ahmadian, J. Mater. Res. 30, 1648 (2015)

    Article  CAS  Google Scholar 

  48. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  49. S. Ahmad, M. Nasir, K. Asokan, M.S. Khan, M. Zulfequar, RSC Adv. 5, 69400 (2015)

    Article  CAS  Google Scholar 

  50. “Sellmeier Equations for Selected Χ(2) Crystals.” Field Guide to Nonlinear Optics (n.d.). https://doi.org/10.1117/3.1002081.ap2.

  51. Mountaineering Strategy to Excited States: Highly Accurate Oscillator Strengths and Dipole Moments of Small Molecules (n.d.). https://doi.org/10.1021/acs.jctc.0c01111.s001.

  52. R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 1992)

    Google Scholar 

  53. J. Malowicki, Effective Non-Linear Refractive Index of Various Optical Materials. (1995). https://doi.org/10.21236/ada299475.

  54. Linear and non-linear optical characterization of MnS nanoparticle. Int. J. Sci. Res. (IJSR) 6(12), 517–518 (2017). https://doi.org/10.21275/art20178700.

  55. C. Dey, A.R. Molla, B. Karmakar, Glass Nanocomposites (Elsevier, 2016), p. 279

  56. J. Serbin, B. N. Chichkov, Nonlinear Optics: Materials, Fundamentals and Applications (Elsevier, 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai M. El-Masry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Masry, M.M., Ibrahim, A.S. Ag-CuO/rGO/PVDF nanocomposite synthesized via simple method as a broadband non-linear optical material for optronic applications. J Mater Sci: Mater Electron 33, 10851–10865 (2022). https://doi.org/10.1007/s10854-022-08066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08066-3

Navigation