Skip to main content
Log in

Improvement on microwave dielectric properties of Zn2GeO4 via gallium doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Ga3+-doped Zn2GeO4 willemite ceramics, in a general formula Zn2+0.5xGe1−xGaxO4 (0.1 ≤ x ≤ 0.4), were prepared and the influence of Ga3+ doping on the phase composition, structure, microstructure, and microwave dielectric properties were studied. XRD, SEM, and Raman analysis evidence that by moderate gallium substitution in the nominal Zn2GeO4, the unfavorable ZnO phase was suppressed, while a low-loss ZnGa2O4 phase was induced. With increasing doping content, the ZnGa2O4 phase increases in phase percentage and becomes dominant (~ 69%) after x = 0.3. Due to the mixture rule, both relative permittivity and quality factor were improved, which is related to the superior dielectric properties of ZnGa2O4 compared to Zn2GeO4. The microwave dielectric properties show a remarkable dependence on the composition. Sintered at 1230 °C, a combination of dielectric performances with εr ~ 9.4, Q × f ~ 97,000 GHz, and τf ~ − 30.7 ppm/°C was accessed in the x = 0.4 composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier Publishers, Oxford, 2008), pp. 1–10

    Book  Google Scholar 

  2. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53, 57–90 (2008)

    Article  CAS  Google Scholar 

  3. G. Subodh, M.T. Sebastian, Glass-free Zn2FeO8 microwave ceramic for LTCC applications. J. Am. Ceram. Soc. 90, 2266–2268 (2007)

    Article  CAS  Google Scholar 

  4. H.C. Xiang, C.C. Li, H. Jantunen, L. Fang, A.E. Hill, Ultra-low loss CaMgGeO4 microwave dielectric ceramic and its chemical compatibility with silver electrodes for low-temperature cofired ceramic applications. ACS Sustain. Chem. Eng. 6, 6458–6466 (2018)

    Article  CAS  Google Scholar 

  5. J.D. Guo, J.X. Bi, Q.J. Mei, H.T. Wu, Characterization and microwave dielectric properties of wolframite type MgZrNb2O8 ceramics. J. Alloys Compd. 655, 60–65 (2016)

    Article  CAS  Google Scholar 

  6. Z.Y. Zou, Z.H. Chen, X.K. Lan, WZh. Lua, B. Ullah, X.H. Wang, W. Lei, Weak ferroelectricity and low-permittivity microwave dielectric properties of Ba2Zn(1+x)Si2O(7+x) ceramics. J. Eur. Ceram. Soc. 37, 3065–3071 (2017)

    Article  CAS  Google Scholar 

  7. C.C. Li, H.C. Xiang, M.Y. Xu, J. Khaliq, J.Q. Chen, L. Fang, Low-firing and temper-ature stable microwave dielectric ceramics: Ba2LnV3O11 (Ln = Nd, Sm). J. Am. Ceram. Soc. 101, 773–781 (2018)

    Article  CAS  Google Scholar 

  8. M.T. Sebastian, R. Ubic, H. Jantunen, Microwave Materials and Applications (Wiley, New York, 2017)

    Book  Google Scholar 

  9. B. Liu, K. Sha, M.F. Zhou, K.X. Song, H.H. Yu, C.H. Cheng, Novel low-εr MGa2O4 (M = Ca, Sr) microwave dielectric ceramics for 5 G antenna applications at the Sub-6 GHz band. J. Eur. Ceram. Soc. 41, 5170–5175 (2021)

    Article  CAS  Google Scholar 

  10. Y. Zhang, X. Jiang, S.H. Ding, T.X. Song, Microwave dielectric property adjustment of CoZrNb2O8 ceramics by CaTiO3 addition. J. Mater. Sci. Mater. Electron. 32, 12661–12670 (2021)

    Article  CAS  Google Scholar 

  11. Q.L. Zhang, H. Yang, H.P. Sun, A new microwave ceramic with low-permittivity for LTCC application. J. Eur. Ceram. Soc. 28, 605–609 (2008)

    Article  CAS  Google Scholar 

  12. N.H. Nguyen, J.B. Lim, S. Nahm, J.H. Paik, J.H. Kim, Effects of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4 ceramics. J. Am. Ceram. Soc. 90, 3127–3130 (2007)

    Article  CAS  Google Scholar 

  13. J. Sugihara, K.I. Kakimoto, I. Kagomiya, H. Ohsato, Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. J. Eur. Ceram. Soc. 27, 3105–3108 (2007)

    Article  CAS  Google Scholar 

  14. J.Q. Chen, Y. Tang, C.Z. Yin, M.Y. Yu, H.C. Xiang, C.C. Li, X.R. Xing, L. Fang, Structure, microwave dielectric performance, and infrared reflectivity spectrum of olivine-type Mg2Ge0.98O4 ceramic. J. Am. Ceram. Soc. 103, 1789–1797 (2020)

    Article  CAS  Google Scholar 

  15. S.P. Wu, Q. Ma, Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics. J. Alloys Compd. 567, 40–46 (2013)

    Article  CAS  Google Scholar 

  16. Y.J. Eoh, E.S. Kim, High quality factory of (Zn0.6Mg0.4)1.98GeO3.198 microwave dielectrics. J. Ceram. Int. 41, 537–543 (2015)

    Article  Google Scholar 

  17. C.Z. Yin, Y. Tang, J.Q. Chen, C.C. Li, L. Fang, F.H. Li, Y.J. Huang, Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (0.1 ≤ x ≤ 0.2). J. Mater. Sci. Mater. Electron. 30, 16651–16658 (2019)

    Article  CAS  Google Scholar 

  18. C.J. Pei, Y. Xiong, C.Z. Yin, G.G. Yao, C.C. Li, Influence of lithium substitution for zinc on crystal structure and microwave dielectric properties of willemite Li2xZn2xGeO4. ECS J. Solid State Sci. Technol. 9, 073005 (2020)

    Article  CAS  Google Scholar 

  19. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  20. X.C. Lu, W.J. Bian, B. Quan, Z.F. Wang, H.K. Zhu, Q.T. Zhang, Compositional tailoring effect on ZnGa2O4-TiO2 ceramics for tunable microwave dielectric properties. J. Alloys Compd. 792, 742–749 (2019)

    Article  CAS  Google Scholar 

  21. J.J. Xue, S.P. Wu, J.H. Li, Synthesis, Microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics. J. Am. Ceram. Soc. 96, 2481–2485 (2013)

    Article  CAS  Google Scholar 

  22. X.C. Lu, W.J. Bian, Y.Y. Li, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Cation distributions and microwave dielectric properties of Cu-substituted ZnGa2O4 spinel ceramics. Ceram. Int. 43, 13839–13844 (2017)

    Article  CAS  Google Scholar 

  23. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  CAS  Google Scholar 

  24. C.C. Li, C.Z. Yin, J. Khaliq, L.J. Liu, Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances. ACS Sustain. Chem. Eng. 9, 14461–14469 (2021)

    Article  Google Scholar 

  25. S.H. Yoon, G.K. Choi, D.W. Kim, S.Y. Cho, K.S. Hong, Mixture behavior and microwave dielectric properties of (1−x)CaWO4xTiO2. J. Eur. Ceram. Soc. 27, 3087–3091 (2007)

    Article  CAS  Google Scholar 

  26. F. Koichi, K. Ryozo, A. Lkuo, Microwave characteristics of TiO2-Bi2O3 dielectric resonator. Jpn. J. Appl. Phys. 32, 4584–4588 (1993)

    Article  Google Scholar 

  27. M.Z. Dang, H.S. Ren, X.G. Yao, H.Y. Peng, T.J. Xie, H.X. Lin, L. Luo, Investigation of phase composition and microwave dielectric properties of MgO-Ta2O5 ceramics with ultrahigh Q×f value. J. Am. Ceram. Soc. 101, 3026–3031 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z. Xing would like to appreciate the financial supports from the National Natural Science Foundation of Shaanxi (Grant No. 2019JQ-573) and the Special Fund for the high-level talents of Xijing University (No. XJ17T05).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Juhai Weng and Chi Ma. The first draft of the manuscript was written by Zhuo Xing and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhuo Xing.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

We would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Weng, J. & Ma, C. Improvement on microwave dielectric properties of Zn2GeO4 via gallium doping. J Mater Sci: Mater Electron 33, 11625–11631 (2022). https://doi.org/10.1007/s10854-022-08063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08063-6

Navigation