Skip to main content
Log in

Effect of vanadium and tungsten doping on the structural, optical, and electronic characteristics of TiO2 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles of TiO2 and Ti0.97M0.03O2 (M≡V, W) samples were produced using sol–gel procedure. Utilizing synchrotron x-ray diffraction data, Rietveld refinement confirmed incorporation of V and W into TiO2 lattice forming a single anatase phase. The effect of doping on the cell parameters, Ti octahedral bond length and its distortion index, crystallite size and microstrain was studied. Also, the changes in the UV–Vis and photoluminescence spectra (color and intensity) were investigated. In the visible range, V-doped sample displayed the highest absorption. The direct optical band gap TiO2, V-, or W-doped TiO2 are 3.1 eV, 2.35 eV, and 2.25 eV, respectively. The density functional calculation (DFT) exhibited a semiconductor nature for undoped and doped TiO2 with V samples, while the W-doped TiO2 sample manifested a metallic characteristic. The effect of doping on the absorption, dielectric function, refractive index, extinction coefficient, and optical conductivity of TiO2 sample was explored using DFT calculation. The maximum value of the refractive index in the case of TiO2 occurred in the UV range, while the doped samples have maximum refractive index values in the visible range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. I. Alessandri, E. Comini, E. Bontempi, G. Sberveglieri, L.E. Depero, Sens. Actuators B 109, 47 (2005)

    Article  CAS  Google Scholar 

  2. M. Li, J. He, Mater. Lett. 174, 48 (2016)

    Article  CAS  Google Scholar 

  3. Z. Yi, J. Wang, T. Jiang, Q. Tang, Y. Cheng, R. Soc, Open Sci. 5, 171457 (2018)

    Google Scholar 

  4. A. Soussi, A. Ait hssi, L. Boulkaddat, M. Boujnah, K. Abouabassi, R. Haounati, A. Asbayou, A. Elfanaoui, R. Markazi, A. Ihlal, K. Bouabid, N. El Biaze, Comput. Condensed Matter 29, 606 (2021)

    Article  Google Scholar 

  5. Y.-F. Li, Z.-P. Liu, J. Am. Chem. Soc. 133, 15743 (2011)

    Article  CAS  Google Scholar 

  6. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000)

  7. K. Santhi, S. Harish, M. Navaneethan, S. Ponnusamy, J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-07138-0

    Article  Google Scholar 

  8. M. Tang, D. Yang, J. Wang, Q. Zhou, X. Zhu, Y. Jiao, Mater. Res. Express 8, 085007 (2021)

    Article  CAS  Google Scholar 

  9. H.M. Javed, M. Adnan, A.A. Qureshi, S. Javed, M. Adeel, M.A. Akram, M. Shahid, M.I. Ahmad, M. Afzaal, H.S. Abd-Rabboh, M. Arif, Opt. Laser Technol. 146, 107566 (2022)

    Article  CAS  Google Scholar 

  10. Y.S. Tamgadge, G.G. Muley, K.U. Deshmukh, V.G. Pahurkar, Opt. Mater. 86, 185 (2018)

    Article  CAS  Google Scholar 

  11. B. Tian, C. Li, F. Gu, H. Jiang, Y. Hu, J. Zhang, Chem. Eng. J. 151, 220 (2009)

    Article  CAS  Google Scholar 

  12. B. Shahmoradi, A. Maleki, K. Byrappa, Catal. Sci. Technol. 1, 1216 (2011)

    Article  CAS  Google Scholar 

  13. O. Avilés-García, J. Espino-Valencia, R. Romero, J.L. Rico-Cerda, M. Arroyo-Albiter, R. Natividad, Fuel 198, 31 (2017)

    Article  CAS  Google Scholar 

  14. L. Xu, C.-Q. Tang, Z.-B. Huang, Acta Physico-Chim. Sin. 26(5), 1401 (2010)

    CAS  Google Scholar 

  15. S. Hameed, A.T. Khalil, M. Ali, M. Numan, S. Khamlich, Z.K. Shinwari, Nanomedicine 14(6), 655 (2019)

    Article  CAS  Google Scholar 

  16. A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande, F.I. Ezema, Sens. Actuators B 206, 671 (2015)

    Article  CAS  Google Scholar 

  17. T. Gupta, J. Cho, J. Prakash, Mater. Today Chem. 20, 100428 (2021)

    Article  CAS  Google Scholar 

  18. H.N. Pantaroto, J.M. Cordeiro, L.T. Pereira, A.B. de Almeida, F.H.N. Junior, E.C. Rangel, N.F.A. Neto, J.H.D. da Silva, V.A.R. Barão, Mater. Sci. Eng. C 129, 111638 (2021)

    Article  CAS  Google Scholar 

  19. P. Arifin, M.A. Mustajab, S. Haryono, D.R. Adhika, A.A. Nugraha, Mater. Res. Express 6, 076313 (2019)

    Article  CAS  Google Scholar 

  20. K. Manikandan, M.P. Kesavan, A. Thirugnanasundar, N.M.A.K. Jailani, A.J. Ahamed, Inorg. Chem. Commun. 132, 108855 (2021)

    Article  CAS  Google Scholar 

  21. H. Wang, C. Zhao, L. Yin, X. Li, X. Tu, E.G. Lim, Y. Liu, C.Z. Zhao, Appl. Surf. Sci. 563, 298 (2021)

    Google Scholar 

  22. A. Giampiccolo, D.M. Tobaldi, E. Jones, J.A. Labrincha, R. Kurchania, M.P. Ansell, R.J. Ball, Build. Environ. 205, 108203 (2021)

    Article  Google Scholar 

  23. H.X. Zhu, X.H. Wang, D.F. Zhou, H. Jiang, X.M. Liu, Phys. Lett. A 384, 126637 (2020)

    Article  CAS  Google Scholar 

  24. S. Gupta, M. Tripathi, Open Chem. 10(2), 279–94 (2012)

    Article  CAS  Google Scholar 

  25. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett 77, 3865 (1996)

    Article  CAS  Google Scholar 

  27. Z.K. Heiba, M.B. Mohamed, N.M. Farag, A. Badawi, J. Mater. Sci.: Mater. Electron. 32(7), 9517 (2021)

    CAS  Google Scholar 

  28. J. Rodríguez-Carvajal, Physica B (Amsterdam, Neth.) 192, 55 (1993)

    Article  Google Scholar 

  29. L. Lutterotti, Nucl. Instrum. Methods Phys. Res. B. 268, 334 (2010)

    Article  CAS  Google Scholar 

  30. S. Sathasivam, D.S. Bhachu, Y. Lu, N. Chadwick, S.A. Althabaiti, A.O. Alyoubi, S.N. Basahel, C.J. Carmalt, I.P. Parkin, Sci Rep 5, 10952 (2015)

    Article  CAS  Google Scholar 

  31. G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, Phys. Rev. B 70(13), 134102 (2004)

    Article  CAS  Google Scholar 

  32. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.-P. Liu, M.M. Rashad, D.A. Rayan, B.W. Mwakikunga, Results Phys. 9, 628 (2018)

    Article  Google Scholar 

  33. M. Khan, Y. Song, N. Chen, W. Cao, Mater. Chem. Phys. 142, 148 (2013)

    Article  CAS  Google Scholar 

  34. C. wei Gong, J. rong Jiao, J. heng Wang, W. Shao, Physica B 457, 140–143 (2015)

    Article  CAS  Google Scholar 

  35. S.A. Ansari, M.H. Cho, Sci. Rep. 6, 25405 (2016)

    Article  CAS  Google Scholar 

  36. P. Manojkumar, E. Lokeshkumar, A. Saikiran, B. Govardhanan, M. Ashok, N. Rameshbabu, J. Alloys Compds. 825, 154092 (2020)

    Article  CAS  Google Scholar 

  37. Z.K. Heiba, M.B. Mohamed, A.M. El-naggar, Y. Altowairqi, A.M. Kama, J. Polym. Res. 28(12), 1 (2021)

    Article  CAS  Google Scholar 

  38. M. Asemi, M. Ghanaatshoar, J Mater Sci 52, 489 (2017)

    Article  CAS  Google Scholar 

  39. A. El Mragui, Y. Logvina, L. Pinto da Silva, O. Zegaoui, J.C.G. Esteves da Silva, Materials 12(23), 3874 (2019)

    Article  CAS  Google Scholar 

  40. C. Wang, H. Shi, Y. Li, Appl Surf Sci 258, 4328 (2012)

    Article  CAS  Google Scholar 

  41. N. Daude, C. Gout, C. Jouanin, Phys. Rev. B 15(6), 3229 (1977)

    Article  CAS  Google Scholar 

  42. K. Kaviyarasu, N. Geetha, S. Sivaranjani, A. Ayeshamariam, J. Kennedy, R. Ladchumananandasiivam, U. Umbelino Gomes, M. Maaza, S. Sivaranjani, Mater. Sci. Eng. C 74, 325–333 (2017)

    Article  CAS  Google Scholar 

  43. Z.M. Tian, S.L. Yuan, S.Y. Yin, S.Q. Zhang, H.Y. Xie, J.H. Miao, Y.Q. Wang, J.H. He, J.Q. Li, J. Magn. Magn. Mater. 320, L5–L9 (2008)

    Article  CAS  Google Scholar 

  44. C. Gong, J. Jiao, J. Wang, W. Shao, Physica B 457, 140 (2015)

    Article  CAS  Google Scholar 

  45. Z.K. Heiba, M.B. Mohamed, A.M. Wahba, J. Mater. Sci.: Mater. Electron. 31, 14645 (2020)

    CAS  Google Scholar 

  46. M. El Amine Monir, H. Baltache, R. Khenata, G. Murtaza, R. Ahmed, W.K. Ahmed, S. Bin Omran, A. Bouhemadouk, Int. J. Mod. Phys. B 30, 1650034 (2016)

    Article  CAS  Google Scholar 

  47. B. Bhattacharya, N.B. Singh, R. Mondal, U. Sarkar, Phys. Chem. Chem. Phys. 17, 19325 (2015)

    Article  CAS  Google Scholar 

  48. M.M.K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, Sci. Rep. 6, 38064 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of Taif University Researchers Supporting Project number (TURSP-2020/12), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

ZKH: supervision, methodology, and data curation. MBM: data collection, software, and writing—review and editing. AB: writing—review and editing, and funding. MA: XRD data collection.

Corresponding authors

Correspondence to Zein K. Heiba or Ali Badawi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Badawi, A. et al. Effect of vanadium and tungsten doping on the structural, optical, and electronic characteristics of TiO2 nanoparticles. J Mater Sci: Mater Electron 33, 10399–10409 (2022). https://doi.org/10.1007/s10854-022-08027-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08027-w

Navigation