Skip to main content

Advertisement

Log in

Enhanced dielectric and electrical properties of three-component PMMA–NaNbO3–starch percolative composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-component PMMA–NaNbO3–starch percolative composites with starch and sodium niobate (NaNbO3; NN) particles embedded into poly(methylmethacrylate) (PMMA) matrix were prepared using solution casting technique. The structure, dielectric and electrical properties of the three-component PMMA–NN–starch composites containing starch in (PMMA + NaNbO3) matrix as function of frequency and the different weight percentages of starch were employed. The experimental results showed that the three-component PMMA–NN–starch composite has a superior dielectric constant (≈395) and suppressed dielectric loss (< 0.6) at 100 Hz. Moreover, the improvement of electrical properties of the composites may be attributed to the synergistic effect of the NN ceramics and conductive starch particles within the polymer matrix. The homogeneous dispersion gives an insulating layer between neighboring conductive starch particles in the PMMA matrix, which not only prevent the direct contact of starch but also provides with better homogeneity of the starch particles in the composite system. Furthermore, the percolation theory is utilized to elucidate the dielectric and electrical performance of the composite. These three-component PMMA–NN–starch composite exhibited an insulator–conductor transition with 7 wt% of starch contents at percolation threshold. This work might be a new approach to produce excellent composite films with enhanced dielectric and electrical properties for high performance energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article. All the data within this manuscript have been collected experimentally by us.

References

  1. S.A. Paniagua, Y. Kim, K. Henry, R. Kumar, J.W. Perry, S.R. Marder, ACS Appl. Mater. Interfaces 6, 3477 (2014)

    Article  CAS  Google Scholar 

  2. Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Nanoenergy 56, 138 (2019)

    CAS  Google Scholar 

  3. K. Yang, X. Huang, J. He, P. Jiang, Adv. Mater. Interfaces 2(17), 1500361 (2015)

    Article  CAS  Google Scholar 

  4. S. Wu, W. Li, M. Lin, Q. Burlingame, Q. Chen, A. Payzant, K. Xiao, Q.M. Zhang, Adv. Mater. 25(12), 1734 (2013)

    Article  CAS  Google Scholar 

  5. Z. Liang, M. Liu, L. Shen, L. Lu, C. Ma, X. Lu, X. Lou, C.L. Jia, ACS Appl. Mater. Interfaces 11, 5247 (2019)

    Article  CAS  Google Scholar 

  6. L. Wu, N. Luo, Z. Xie, Y. Liu, F. Chen, Q. Fu, Compos. Sci. Technol. 190, 108046 (2020)

    Article  CAS  Google Scholar 

  7. L. Zhang, R. Xi, S.H. Zhang, C. Wang, H.D. Wu, L.Y. Shi, G.B. Pan, Mater. Lett. 242, 1 (2019)

    Article  CAS  Google Scholar 

  8. X. Zhang, B.W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.W. Nan, Adv. Mater. Interfaces 5(11), 1800096 (2018)

    Article  CAS  Google Scholar 

  9. Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, C.W. Nan, Appl. Phys. Lett. 101, 152904 (2012)

    Article  CAS  Google Scholar 

  10. D. He, Y. Wang, S. Song, S. Liu, Y. Luo, Y. Deng, Compos. Sci. Technol. 151, 25 (2017)

    Article  CAS  Google Scholar 

  11. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)

    Article  CAS  Google Scholar 

  12. Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Annu. Rev. Mater. Res. 45, 433 (2015)

    Article  CAS  Google Scholar 

  13. F. He, K.H. Lam, J.T. Fan, L.W. Chan, Polym. Test. 32, 927 (2013)

    Article  CAS  Google Scholar 

  14. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57(4), 660 (2012)

    Article  CAS  Google Scholar 

  15. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C.Z. Loye, Materials 2(4), 1697 (2009)

    Article  CAS  Google Scholar 

  16. L.Y. Xie, X.Y. Huang, C. Wu, P.K. Jiang, J. Mater. Chem. 21, 5897 (2011)

    Article  CAS  Google Scholar 

  17. Z.M. Dang, L.Z. Fan, Y. Shen, C.W. Nan, Chem. Phys. Lett. 369, 95 (2003)

    Article  CAS  Google Scholar 

  18. Z.M. Dang, Y. Shen, C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002)

    Article  CAS  Google Scholar 

  19. M. Zhao, Q. Fu, Y. Hou, L. Luo, W. Li, ACS Omega 4(1), 1000 (2019)

    Article  CAS  Google Scholar 

  20. G.S. Wang, ACS Appl. Mater. Interfaces 2, 1290 (2010)

    Article  CAS  Google Scholar 

  21. L. Zhang, D. Xiao, J. Ma, Ferroelectrics 455(1), 77 (2013)

    Article  CAS  Google Scholar 

  22. Y. Deng, Y. Zhang, G. Wang, H. Xu, J. Mater. Chem. 19, 2058 (2009)

    Article  CAS  Google Scholar 

  23. H.W. Choi, Y.W. Heo, J.H. Lee, J.J. Kim, Appl. Phys. Lett. 89, 132910 (2006)

    Article  CAS  Google Scholar 

  24. Z.M. Dang, S.H. Yao, J.K. Yuan, J. Bai, J. Phys. Chem. C 114(31), 13204 (2010)

    Article  CAS  Google Scholar 

  25. Y. Liu, J. Shi, P. Kang, P. Wu, Z. Zhou, G.X. Chen, Polymers 188, 122157 (2020)

    Article  CAS  Google Scholar 

  26. M. Fang, Z. Wang, H. Li, Y. Wen, Ceram. Int. 41, 387 (2015)

    Article  CAS  Google Scholar 

  27. B.V. Basheer, J.J. George, S. Siengchin, J. Parameswaranpillai, Nanostruct. Nanoobjects 22, 100429 (2020)

    CAS  Google Scholar 

  28. S. Porel, N. Hebalkar, B. Sreedhar, T.P. Radhakrishnan, Adv. Funct. Mater. 17(24), 2550 (2007)

    Article  CAS  Google Scholar 

  29. H.D. Megaw, Ferroelectr. Lett. Sect. 7(1), 87 (1974)

    Article  CAS  Google Scholar 

  30. C.N.M. Dariington, H.D. Megaw, Acta Crystallogr. B 29, 2171 (1973)

    Article  Google Scholar 

  31. K. Zhu, Y. Cao, X. Wang, L. Bai, J. Qiu, H. Ji, CrystEngComm 14(2), 411 (2012)

    Article  CAS  Google Scholar 

  32. X. Cheng, Q. Gou, J. Wu, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, Ceram. Int. 40(4), 5771 (2014)

    Article  CAS  Google Scholar 

  33. S.G. Jabarov, D.P. Kozlenko, S.E. Kichanov, A.V. Belushkin, A.I. Mammadov, B.N. Savenko, R.Z. Mekhtieva, C. Lathe, J. Surf. Investig. 6(3), 546 (2012)

    Article  CAS  Google Scholar 

  34. J. Tellier, B. Malic, J. Dkhil, D. Jenko, J. Cilensek, M. Kosec, Solid State Sci. 11(2), 320 (2009)

    Article  CAS  Google Scholar 

  35. L. Ji, M. Liu, D. Xue, Mater. Res. Bull. 45(3), 314 (2010)

    Article  CAS  Google Scholar 

  36. L. Durai, S.A. Badhulika, N. J. Chem. 43, 11994 (2019)

    Article  CAS  Google Scholar 

  37. M.H. Alaaeddin, S.M. Sapuan, M.Y.M. Zuhri, E.S. Zainudin, M.A.O. Faris, Renew. Sustain. Energy Rev. 102, 318 (2019)

    Article  CAS  Google Scholar 

  38. Y. Fan, W. Wang, J. Zhao, Ceram. Int. 46(8), 12269 (2020)

    Article  CAS  Google Scholar 

  39. L. Yang, X. Kong, Z. Cheng, S. Zhang, ACS Appl. Mater. Interfaces 12(29), 32834 (2020)

    Article  CAS  Google Scholar 

  40. X. Ren, H. Fan, C. Wang, J. Ma, H. Li, M. Zhang, S. Lei, W. Wang, Nano Energy 50, 562 (2018)

    Article  CAS  Google Scholar 

  41. Y. Zhao, F. Fan, X. Ren, C. Long, G. Liu, Z. Liu, J. Mater. Chem. C 4, 7324 (2016)

    Article  CAS  Google Scholar 

  42. M.M. Demir, M. Memesa, P. Castignolles, G. Wegner, Macromol. Rapid Commun. 27(10), 763 (2006)

    Article  CAS  Google Scholar 

  43. M. Arora, E.K.S. Chan, S. Gupta, A.D. Diwan, World J. Orthop. 4(2), 67 (2013)

    Article  Google Scholar 

  44. A.C. Henry, T.J. Tutt, M. Galloway, Y.Y. Davidson, C.S. McWhorter, S.A. Soper, R.L. McCarley, Anal. Chem. 72(21), 5331 (2000)

    Article  CAS  Google Scholar 

  45. L.P. Bressan, C.B. Adamo, R.F. Quero, D.P. de Jesus, J.A.F. da Silva, Anal. Methods 11, 1014 (2019)

    Article  CAS  Google Scholar 

  46. S. Dey, A.K. Kar, Mater. Sci. Semicond. Process. 103, 104644 (2019)

    Article  CAS  Google Scholar 

  47. U. Ali, K.J.B.A. Karim, N.A. Buang, Polym. Rev. 55(4), 678 (2015)

    Article  CAS  Google Scholar 

  48. W.S. Ratnayake, D.S. Jackson, Adv. Food Nutr. Res. 55, 221 (2008)

    Article  CAS  Google Scholar 

  49. D.R. Lu, C.M. Xiao, S.J. Xu, eXPRESS Polym. Lett. 3, 366 (2009)

    Article  CAS  Google Scholar 

  50. A. Jimenez, M.J. Fabra, P. Talens, A. Chiralt, Food Bioprocess Technol. 5(6), 2058 (2012)

    Article  CAS  Google Scholar 

  51. Y. Tian, K. Zhang, M. Zhou, Y.J. Wei, F. Cheng, Y. Lin, Starch 71, 1800218 (2019)

    Article  CAS  Google Scholar 

  52. X. Ren, H. Fan, Y. Zhao, Z. Liu, ACS Appl. Mater. Interfaces 8(39), 26190 (2016)

    Article  CAS  Google Scholar 

  53. D. Subaric, J. Babic, A. Lalic, D. Ackar, M. Kopjar, Czech J. Food Sci. 29(4), 354 (2011)

    Article  CAS  Google Scholar 

  54. U. Farooq, R. Phul, S.M. Alshehri, J. Ahmed, T. Ahmad, Sci. Rep. 9, 4488 (2019)

    Article  CAS  Google Scholar 

  55. S.K. Mishra, R. Mittal, V.Y. Pomjakushin, S.L. Chaplot, Phys. Rev. B 83, 134105 (2011)

    Article  CAS  Google Scholar 

  56. B.K. Saikia, R.K. Boruah, P.K. GoGoi, Bull. Mater. Sci. 30, 421 (2007)

    Article  CAS  Google Scholar 

  57. M.S. Khan, S. Sultana, Z.A. Raza, G. Khan, Ionics 20, 353 (2014)

    Article  CAS  Google Scholar 

  58. B. Zhang, D. Cui, M. Liu, H. Gong, Y. Huang, F. Han, Int. J. Biol. Macromol. 50, 250 (2012)

    Article  CAS  Google Scholar 

  59. Y. Liu, H. Xie, M. Shi, Starch 68, 683 (2016)

    Article  CAS  Google Scholar 

  60. T. Ma, P.R. Chang, P. Zheng, X. Ma, Carbohydr. Polym. 94, 63 (2013)

    Article  CAS  Google Scholar 

  61. S.I. Mollik, R.B. Alam, M.R. Islam, Synth. Met. 271, 116624 (2021)

    Article  CAS  Google Scholar 

  62. O.A. Bin-Dahman, M. Rahaman, D. Khastgir, M.A. Al-Harthi, Can. J. Chem. Eng. 96, 903 (2018)

    Article  CAS  Google Scholar 

  63. A. Olad, F. Doustdar, H. Gharekhani, Colloids Surf. A 601, 124962 (2020)

    Article  CAS  Google Scholar 

  64. P. Bhawal, S. Ganguly, T.K. Chaki, N.C. Das, RSC Adv. 6, 20781 (2016)

    Article  CAS  Google Scholar 

  65. Y. Kou, W. Zhou, X. Li, Z. Wang, Y. Li, H. Cai, D. Liu, F. Chen, G. Wang, Z.M. Dang, Polym. Plast. Technol. Mater. 59(6), 592 (2020)

    CAS  Google Scholar 

  66. Q. Wang, W. Jiang, S. Guan, Y. Zhang, J. Inorg. Organomet. Polym. Mater. 23, 743 (2013)

    Article  CAS  Google Scholar 

  67. S.Y. Jun, D. Jung, J.Y. Kim, S. Yu, Mater. Chem. Phys. 255, 123533 (2020)

    Article  CAS  Google Scholar 

  68. R.J. Sengwa, S. Choudhary, J. Phys. Chem. Solids 75(6), 765 (2014)

    Article  CAS  Google Scholar 

  69. Q. Guo, Q. Xue, J. Sun, M. Dong, F. Xia, Z. Zhang, Nanoscale 7, 3660 (2015)

    Article  CAS  Google Scholar 

  70. N. Hu, Y. Karube, C. Yan, Z. Masuda, H. Fukunaga, Acta Mater. 56(13), 2929 (2008)

    Article  CAS  Google Scholar 

  71. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  72. R. Padhee, P.R. Das, B.N. Parida, R.N.P. Choudhary, J. Phys. Chem. Solids 74, 377 (2013)

    Article  CAS  Google Scholar 

  73. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Ceram. Int. 44(17), 21330 (2018)

    Article  CAS  Google Scholar 

  74. K.T. Arul, M.S.R. Rao, J. Phys. Chem. Solids 146, 109371 (2020)

    Article  CAS  Google Scholar 

  75. S. Dash, R.N.P. Choudhary, M.N. Goswami, J. Alloys Compd. 715, 29 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Centurion University of Technology and Management, Odisha, India for carrying out the present research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ASG: Data analysis, Methodology, and Writing—original draft. SM: Writing—review and editing. All authors have discussed and contributed to this work.

Corresponding author

Correspondence to Srikanta Moharana.

Ethics declarations

Conflict of interest

The authors (s) declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadtya, A.S., Moharana, S. Enhanced dielectric and electrical properties of three-component PMMA–NaNbO3–starch percolative composite films. J Mater Sci: Mater Electron 33, 10072–10085 (2022). https://doi.org/10.1007/s10854-022-07997-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07997-1

Navigation