Skip to main content
Log in

The research and synthesis of the cubic 2MnCO3@ZnO applied as cathode material for zinc ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, 2MnCO3@ZnO was synthesized by a hydrothermal method as a cathode material for Zn-ion batteries. In order to synthesize the 2MnCO3@ZnO material with the best electrochemical performance, the manganese source, hydrothermal conditions and calcination conditions were optimized. According to the electrochemical performance tests conducted to study the properties of the synthesized material, the highest capacity of the material in the cyclic charge–discharge test is 154.7 mAh/g. To investigate its chemical composition and microstructure, further physical characterization tests such as XRD, SEM, EDS, XPS and FT-IR were performed. Based on the results of XRD, EDS, XPS and FT-IR, the synthesized material is highly identified with 2MnCO3@ZnO. At the same time, EDS and SEM results show that the material has a cubic structure and the distribution of each element is uniform, indicating that the composite material has good structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data, models, or code were generated or used during the study.

References

  1. J. Huang, Z. Guo, Y. Ma et al., Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 3(1), 1800272 (2019)

    Article  Google Scholar 

  2. D. Kundu, B.D. Adams, V. Duffort et al., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 1–8 (2016)

    Article  Google Scholar 

  3. S. Huang, J. Zhu, J. Tian et al., Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. A Eur. J. 25(64), 14480–14494 (2019)

    Article  CAS  Google Scholar 

  4. O. Schmidt, A. Hawkes, A. Gambhir et al., The future cost of electrical energy storagebased on experience rates. Nat. Energy 2(8), 1–8 (2017)

    Article  Google Scholar 

  5. L. Hu, P. Xiao, L. Xue et al., The rising zinc anodes for high-energy aqueous batteries. EnergyChem 3(2), 100052 (2021)

    Article  CAS  Google Scholar 

  6. L. Hong, X. Wu, C. Ma et al., Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 9(31), 16814–16823 (2021)

    Article  CAS  Google Scholar 

  7. S. Guo, L. Qin, T. Zhang et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021)

    Article  Google Scholar 

  8. R. Qin, Y. Wang, M. Zhang et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021)

    Article  CAS  Google Scholar 

  9. Y. Qian, C. Meng, Q. Cheng et al., Electrochemical synthesis of Na0.25 MnO2@ ACC cathode and Zn@ K-ACC anode for flexible quasi-solid-state zinc-ion battery with superior performance. J. Mater. Sci. Mater. Electron. 31(18), 15943–15953 (2020)

    Article  CAS  Google Scholar 

  10. H. Peng, H. Fan, C. Yang et al., Ultrathin δ-MnO2 nanoflakes with Na+ intercalation as a high-capacity cathode for aqueous zinc-ion batteries. RSC Adv. 10(30), 17702–17712 (2020)

    Article  CAS  Google Scholar 

  11. Z. Yao, D. Cai, Z. Cui et al., Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries. Ceram. Int. 46(8), 11237–11245 (2020)

    Article  CAS  Google Scholar 

  12. J. Zhang, Y. Huang, Z. Li et al., Polyacrylic acid assisted synthesis of free-standing MnO2/CNTs cathode for Zinc-ion batteries. Nanotechnology 31(37), 375401 (2020)

    Article  CAS  Google Scholar 

  13. Q. Tan, X. Li, B. Zhang et al., Valence engineering via in situ carbon reduction on octahedron sites Mn3O4 for ultra-long cycle life aqueous zn-ion battery. Adv. Energy Mater. 10(38), 2001050 (2020)

    Article  CAS  Google Scholar 

  14. T. Zeng, C. Zhang, Facile-synthesized amorphous CoCO3 for high-capacity lithium-ion battery anode. Ionics 25(9), 4149–4159 (2019)

    Article  CAS  Google Scholar 

  15. S. Ruan, C. Ma, J. Wang et al., Facile synthesis of graphene-wrapped porous MnCO3 microspheres with enhanced surfacecapacitive effects for superior lithium storage. Chem. Eng. J. 367, 64–75 (2019)

    Article  CAS  Google Scholar 

  16. C.M. Julien, M. Massot, C. Poinsignon, Lattice vibrations of manganese oxides. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60(3), 689–700 (2004)

    Article  CAS  Google Scholar 

  17. D. Su, J. Wang, Z. Yang et al., Stability electrochemical performance of self-assembled hierarchical MnCO3/ MWCNT nanocomposite as anode material for lithium-ion batteries. J. Solid State Electrochem. 22, 3485–3491 (2018)

    Article  CAS  Google Scholar 

  18. H. Liu, One-pot synthesis and characterization of MnCO3 hierarchical micro/nano twin-spheres with superior lithiumstorage performances. J. Mater. Sci.: Mater. Electron. 29(12), 10117–10122 (2018)

    CAS  Google Scholar 

  19. Y. Zhao, Y. Mu, L. Wang et al., MnCO3-RGO composite anode materials: in-situ solvothermal synthesis and electrochemical performances. Electrochim. Acta 317, 786–794 (2019)

    Article  CAS  Google Scholar 

  20. X.Y. Pei, D.C. Mo, S.S. Lyu et al., Synthesis of MnCO3/multiwalled carbon nanotube composite as anode material forlithium-ion batteries. J. Nanosci. Nanotechnol. 19(9), 5743–5749 (2019)

    Article  CAS  Google Scholar 

  21. Y.S. Jun, S.K. Ghose, T.P. Trainor, P.J. Eng, S.T. Martin, Structure of the hydrated(101–4) surface of rhodochrosite (MnCO3). Environ. Sci. Technol. 41(11), 3918–3925 (2007)

    Article  CAS  Google Scholar 

  22. S. Devaraj, H.Y. Liu, P. Balaya, MnCO3: a novel electrode material for supercapacitors. J. Mater. Chem. A. 2(12), 4276 (2014)

    Article  CAS  Google Scholar 

  23. P. Poizot, S. Laruelle, S. Grugeon et al., Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries. Nature 407(407), 496–499 (2000)

    Article  CAS  Google Scholar 

  24. H. Wang, Q. Pan, Y. Cheng et al., Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 54(10), 2851–2855 (2009)

    Article  CAS  Google Scholar 

  25. Y.N. Zhou, W.J. Li, Z.W. Fu, Electrochemical reactivity of nanocomposite ZnO-Se for lithium-ion batteries. Electrochim. Acta 59(4), 435–440 (2012)

    Article  CAS  Google Scholar 

  26. H. Liu, One-pot synthesis and characterization of MnCO3hierarchical micro/nano twin-spheres with superior lithium storage performances. J. Mater. Sci.: Mater. Electron. 29(12), 10117–10122 (2018)

    CAS  Google Scholar 

  27. D. Wang, F. Li, M. Liu et al., 3D aperiodic hierarchical porous graphitic carbon material for high-rate electro-chemical capacitive energy storage. Angew. Chem. 120(2), 379–382 (2008)

    Article  Google Scholar 

  28. J.K. Heuer, J.F. Stubbins, An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 41(7), 1231–1243 (1999)

    Article  CAS  Google Scholar 

  29. Ai. Yong, The research on infrared spectrum analysis of alumina production of mother. Light Metal 3, 25 (2002)

    Google Scholar 

  30. L.P. Kang, M.M. Zhang, Z.H. Liu et al., IR spectra of manganeseoxides with either layered or tunnel structures. Spectrochim. Acta A 67(3–4), 864 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is founded by the start-up foundation of postdoctoral innovation and practice base of Anyang Institute of Technology

Funding

The funded was provided by the start-up foundation of postdoctoral innovation and practice base of Anyang Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

LL contributed to the experimental process and data analysis; TJ and XP contributed to the physical characterization of materials; SH was involved in original draft preparation and editing. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ling Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jia, T., Pei, X. et al. The research and synthesis of the cubic 2MnCO3@ZnO applied as cathode material for zinc ion battery. J Mater Sci: Mater Electron 33, 9988–10001 (2022). https://doi.org/10.1007/s10854-022-07990-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07990-8

Navigation