Skip to main content

Advertisement

Log in

Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SrFe2O4 prepared by sol–gel method after annealing at 800 °C crystallizes in a normal spinel structure. The structural, morphological, magnetic, optical, transport, and photo-electrochemical properties were systematically investigated. The sol–gel permits to have nanocrystallites with an average size of ~ 30 nm. The UV–Visible diffuse reflectance analysis gives a direct transition of 1.80 eV, resulting from the Fe3+: 3d orbital splitting in octahedral site. Such degeneracy lifting into (t2g–eg) levels is properly matched to the sun spectrum. The capacitance–potential (C−2 − E) characteristic of SrFe2O4 plotted in basic electrolyte (KOH 0.1 M) exhibits p-type comportment with a flat band potential of (Efb) of 0.01 VSCE, a holes density (NA) of 1.4 × 1015 cm−3, and an extended space charge region of 0.9 µm. The electrochemical impedance spectroscopy exhibits a semicircle characteristic of the charge transfer whose diameter decreases under irradiation, thus supporting the semiconducting character of SrFe2O4. The electrons in the conduction band (− 1.70 V) have a high reducing ability and cathodically positioned with respect to the H2O/H2 level, thus producing H2 evolution under visible light illumination with a concomitant oxidation of SO32−/S2O62−. The best activity occurs at pH ~ 11 with H2 evolution rate of 35 μmol mn−1 g−1 and a quantum yield of 1.8% under visible light (29 mW cm−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Zheng HQ, Wang XB, Hu JY, Zhao JA, Du CX, Fan YT et al (2016) Photo-catalytic H2 evolution, structural effect and electron transfer mechanism based on four novel [2Fe2S] model complexes by photochemical splitting water. Sol. Energy 132:373–385. https://doi.org/10.1016/j.solener.2016.03.010

    Article  CAS  Google Scholar 

  2. Jin-hui Z (2012) Research on UV/TiO2 photocatalytic oxidation of organic matter in drinking water and its influencing factors. Procedia Environ. Sci. 12:445–452. https://doi.org/10.1016/j.proenv.2012.01.302

    Article  CAS  Google Scholar 

  3. Rekhila G, Gabes Y, Bessekhouad Y, Trari M (2018) Hydrogen production under visible illumination on the spinel NiMn2O4 prepared by sol gel. Sol. Energy 166:220–225. https://doi.org/10.1016/j.solener.2018.02.064

    Article  CAS  Google Scholar 

  4. Kaizra S, Louafi Y, Bellal B, Trari M, Rekhila G (2015) Electrochemical growth of tin(II) oxide films: application in photocatalytic degradation of methylene blue. Mater. Sci. Semicond. Process. 30:554–560. https://doi.org/10.1016/j.mssp.2014.10.045

    Article  CAS  Google Scholar 

  5. Roumila Y, Abdmeziem K, Rekhila G, Trari M (2016) Semiconducting properties of hydrothermally synthesized libethenite application to orange G photodegradation. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2015.10.018

    Article  Google Scholar 

  6. Rekhila G, Bessekhouad Y, Trari M (2016) Synthesis and characterization of the spinel ZnFe2O4, application to the chromate reduction under visible light. Environ Technol Innov. https://doi.org/10.1016/j.eti.2016.01.007

    Article  Google Scholar 

  7. Vijayalakshmi S, Elaiyappillai E, Johnson PM et al (2020) Multifunctional magnetic CoFe2O4 nanoparticles for the photocatalytic discoloration of aqueous methyl violet dye and energy storage applications. J. Mater. Sci.: Mater. Electron. 31:10738–10749. https://doi.org/10.1007/s10854-020-03624-z

    Article  CAS  Google Scholar 

  8. Kharat PB, More SD, Somvanshi SB et al (2019) Exploration of thermoacoustics behavior of water based nickel ferrite nanofluids by ultrasonic velocity method. J. Mater. Sci.: Mater. Electron. 30:6564–6574. https://doi.org/10.1007/s10854-019-00963-4

    Article  CAS  Google Scholar 

  9. Kulkarni GD, Khedkar MV, Somvanshi SB, Borade RM, More SD, Jadhav KM (2021) Green synthesis and investigations of structural, cation distribution, morphological, and magnetic properties of nanoscale nickel ferrites: the effect of green fuel proportion. Phase Trans. 94(12):994–1005. https://doi.org/10.1080/01411594.2021.1993221

    Article  CAS  Google Scholar 

  10. Dib K, Brahimi R, Bessekhouad Y, Tayebi N, Trari M (2016) Structural, optical and transport properties of SxZnO. Mater. Sci. Semicond. Process. 48:52–59. https://doi.org/10.1016/j.mssp.2016.03.010

    Article  CAS  Google Scholar 

  11. Xu Q, Li R, Wang C, Yuan D (2017) Visible-light photocatalytic reduction of Cr(VI) using nano-sized delafossite (CuFeO2) synthesized by hydrothermal method. J. Alloy. Compd. 723:441–447. https://doi.org/10.1016/j.jallcom.2017.06.243

    Article  CAS  Google Scholar 

  12. Jadhav SA, Khedkar MV, Somvanshi SB, Jadhav KM (2021) Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications. Ceram Int 47(20):28059–29534. https://doi.org/10.1016/j.ceramint.2021.07.021

    Article  CAS  Google Scholar 

  13. Kharat PB, Somvanshi SB, Khirade PP, Jadhav KM (2020) Induction heating analysis of surface-functionalized nanoscale CoFe2O4for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5(36):23378–23384. https://doi.org/10.1021/acsomega.0c03332

    Article  CAS  Google Scholar 

  14. Somvanshi SB, Kharat PB, Saraf TS, Somwanshi SB, Shejul SB, Jadhav KM (2020) Multifunctional nano magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innov. https://doi.org/10.1080/14328917.2020.1769350

    Article  Google Scholar 

  15. Patade SR, Andhare DD, Somvanshi SB, Kharat PB, Jadhav KM (2020) Effect of zinc doping on water-based manganese ferrite nanofluids for magnetic hyperthermia application. AIP Conf. Proc. 2265:030557. https://doi.org/10.1063/5.0017051

    Article  CAS  Google Scholar 

  16. Bhosale AB, Somvanshi SB, Murumkar VD, Jadhav KM (2020) Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: magnetic, electrical and dielectric behavior. Ceram. Int. 46:15372–15378. https://doi.org/10.1016/j.ceramint.2020.03.081

    Article  CAS  Google Scholar 

  17. Patade SR, Andhare DD, Somvanshi SB, Jadhav SA, Khedkar MV, Jadhav KM (2020) Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46:1625576–1625583. https://doi.org/10.1016/j.ceramint.2020.07.029

    Article  CAS  Google Scholar 

  18. Kharat PB, Somvanshi SB, Kounsalye JS, Deshmukh SS, Khirade PP, Jadhav KM (2018) Temperature dependent viscosity of cobalt ferrite/ethylene glycol ferrofluids. AIP Conf. Proc. 1942:050044. https://doi.org/10.1063/1.5028675

    Article  CAS  Google Scholar 

  19. Kharat PB et al (2020) J. Phys.: Conf. Ser. 1644:012028. https://doi.org/10.1088/1742-6596/1644/1/012028

    Article  CAS  Google Scholar 

  20. Hake RR (1967) upper-critical-field limits for bulk type-II superconductors. Appl. Phys. Lett. 10:189. https://doi.org/10.1063/1.1754905

    Article  CAS  Google Scholar 

  21. Gerischer H (1990) The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta 35(11–12):1677–1699. https://doi.org/10.1016/0013-4686(90)87067-C

    Article  CAS  Google Scholar 

  22. Meziani D, Reziga A, Rekhila G, Bellal B, Trari M (2014) Hydrogen evolution under visible light over LaCoO3 prepared by chemical route. Energy Convers. Manag. 82:244–249. https://doi.org/10.1016/J.ENCONMAN.2014.03.028

    Article  CAS  Google Scholar 

  23. Rekhila G, Bessekhouad Y, Trari M (2015) Hydrogen evolution under visible light over the solid solution NiFe<inf>2-x</inf>Mn<inf>x</inf>O<inf>4</inf> prepared by sol gel. Int. J. Hydrogen Energy 40:12611–12618. https://doi.org/10.1016/j.ijhydene.2015.07.109

    Article  CAS  Google Scholar 

  24. Ali AM, Emanuelsson EAC, Patterson DA (2011) Conventional versus lattice photocatalysed reactions: implications of the lattice oxygen participation in the liquid phase photocatalytic oxidation with nanostructured ZnO thin films on reaction products and mechanism at both 254nm and 340nm. Appl. Catal. B 106:323–336. https://doi.org/10.1016/j.apcatb.2011.05.033

    Article  CAS  Google Scholar 

  25. Brahimi R, Bessekhouad Y, Bouguelia A, Trari M (2007) CuAlO2/TiO2 heterojunction applied to visible light H2 production. J. Photochem. Photobiol. A 186:242–247. https://doi.org/10.1016/j.jphotochem.2006.08.013

    Article  CAS  Google Scholar 

  26. Fan T, Chen C, Tang Z, Ni Y, Lu C (2015) Materials Science in Semiconductor Processing Synthesis and characterization of g-C3 N4/BiFeO3 composites with an enhanced visible light photocatalytic activity. Mater. Sci. Semicond. Process. 40:530–535

    Google Scholar 

  27. W .Zhao, D.Y.C. Leung, SC (2019)

  28. Rekhila G, Bessekhouad Y, Trari M (2013) Visible light hydrogen production on the novel ferrite NiFe2O4 Int. J. Hydrogen Energy 38:6335–6343. https://doi.org/10.1016/j.ijhydene.2013.03.087

    Article  CAS  Google Scholar 

  29. Rekhila G, Gabes Y, Brahimi R, Bessekhouad Y, Mahroua O, Trari M (2018) Preparation and characterization of the system NiMn2O4/TiO2 by sol–gel: application to the photodegradation of benzamide under visible light. J. Sol-Gel Sci. Technol. 85:677–683. https://doi.org/10.1007/s10971-018-4598-x

    Article  CAS  Google Scholar 

  30. Bharati VA, Somvanshi SB, Humbe AV, Murumkar VD, Sondur VV, Jadhav KM (2020) Influence of trivalent AleCr co-substitution on the structural, morphological and Mossbauer properties of nickel ferrite nanoparticles. J. Alloy. Compod. 821:153501. https://doi.org/10.1016/j.jallcom.2019.153501

    Article  CAS  Google Scholar 

  31. Saib F, Mekiri M, Bellal B, Chibane M, Trari M (2017) Photoelectrochemical properties of the Brownmillerite Sr2Fe2O5: application to electrochemical oxygen evolution. Russ. J. Phys. Chem. 91:1562–1570. https://doi.org/10.1134/S0036024417080295

    Article  CAS  Google Scholar 

  32. Somvanshi SB, Khedkar MV, Kharat PB, Jadhav KM (2020) Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram. Int. 46:8640–8650. https://doi.org/10.1016/j.ceramint.2019.12.097

    Article  CAS  Google Scholar 

  33. Rekhila G, Trari M (2021) Physical properties of the ferrites NiFe2− xMnxO4 (0≤ x≤ 2) prepared by sol–gel method. J. Mater. Sci.: Mater. Electron. 32:1897–1906. https://doi.org/10.1007/s10854-020-04958-4

    Article  CAS  Google Scholar 

  34. Tatarchuk T, Shyichuk A, Sojka Z, Gryboś J, Naushad M, Kotsyubynsky V, Kowalska M, Kwiatkowska-Marks S, Danyliuk N (2021) Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. J. Mol. Liq. 328. https://doi.org/10.1016/j.molliq.2021.11537

    Article  CAS  Google Scholar 

  35. Tatarchuk T, Shyichuk A, Trawczyńska I, Yaremiy I, Pędziwiatr AT, Kurzydło P, Gargula R (2020) Spinel cobalt(II) ferrite-chromites as catalysts for H2O2 decomposition: synthesis, morphology, cation distribution and antistructure model of active centers formation. Ceram. Int. 46:27517–27530. https://doi.org/10.1016/j.ceramint.2020.07.243

    Article  CAS  Google Scholar 

  36. Tatarchuk T, Naushad M, Tomaszewska J et al (2020) Adsorption of Sr(II) ions and salicylic acid onto magnetic magnesium-zinc ferrites: isotherms and kinetic studies. Environ. Sci. Pollut. Res. 27:26681–26693. https://doi.org/10.1007/s11356-020-09043-1

    Article  CAS  Google Scholar 

  37. Burange NM, Chogule SS, Patil DR, Devan RS, Koleka YD, Chougle BK (2009) J. Alloy. Compd. 2009(479):569–573. https://doi.org/10.1016/j.jallcom.2009.01.004

    Article  CAS  Google Scholar 

  38. Liu X, Zhang T, Zhang L (2018) Microwave-induced catalytic application of magnetically separable strontium ferrite in the degradation of organic dyes: insight into the catalytic mechanism. Sep. Purif. Technol. 195:192–198. https://doi.org/10.1016/j.seppur.2017.12.015

    Article  CAS  Google Scholar 

  39. Li L, Xiang C, Liang X, Hao B (2010) Synth. Met. 160:28–34. https://doi.org/10.1016/j.synthmet.2009.09.026

    Article  CAS  Google Scholar 

  40. Ghalandari A, Taghizadeh M, Rahmani M (2019) Statistical optimization of the biodiesel production process using a magnetic core-mesoporous shell KOH/Fe3O4@γ-Al2O3 nanocatalyst. Chem. Eng. Technol. 42(1):89–99. https://doi.org/10.1002/ceat.201700658

    Article  CAS  Google Scholar 

  41. Shaikh SF, Mohd Ubaidullah M, Mane RS, Al-Enizi A (2020) Types, synthesis methods and applications of ferrites. In: Mane RS, Jadhav V (eds) Spinel Ferrite Nanostructures for Energy Storage Devices. Elsevier, Amsterdam, pp 51–82. https://doi.org/10.1016/B978-0-12-819237-5.00004-3

    Chapter  Google Scholar 

  42. Muthuselvam IP, Bhowmik RN (2010) J. Magn. Magn. Mater. 322:767–776. https://doi.org/10.1016/j.jmmm.2009.10.057

    Article  CAS  Google Scholar 

  43. Azoudj Y, Merzougui Z, Rekhila G, Trari M (2018) The adsorption of HCrO4− on activated carbon of date pits and its photoreduction on the hetero-system Zn Co2O4/TiO2 Appl Water Sci 8:114. https://doi.org/10.1007/s13201-018-0755-1

    Article  CAS  Google Scholar 

  44. Cherifi K, Rekhila G, Omeiri S, Bessekhouad Y, Trari M (2019) Physical and photoelectrochemical properties of the spinel Zn Cr 2O4 prepared by sol gel: application to orange II degradation under solar light. J. Photochem. Photobiol. A 368:290–295

    Article  CAS  Google Scholar 

  45. Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sustain. Energy Rev. 14:919–937. https://doi.org/10.1016/j.rser.2009.11.006

    Article  CAS  Google Scholar 

  46. Tributsch H (2008) Photovoltaic hydrogen generation. Int. J. Hydrogen Energy 33:5911–5930. https://doi.org/10.1016/j.ijhydene.2008.08.017

    Article  CAS  Google Scholar 

  47. Ahmad I, Shah S, Zafar MN, Ashiq MN, Tang W, Jabee U (2020) Synthesis, characterization and charge transport properties of Pr–Ni Co-doped SrFe2O4 spinel for high frequency devices applications. Ceram. Int. 47:3760–3771. https://doi.org/10.1016/j.ceramint.2020.09.233

    Article  CAS  Google Scholar 

  48. Abid H, Rekhila G, Ihaddadene FA, Bessekhouad Y, Trari M (2019) Hydrogen evolution under visible light illumination on the solid solution CdxZn1-xS prepared by ultrasound-assisted route. Int. J. Hydrogen Energy 4:4–11

    Google Scholar 

  49. Shirsath SE, Toksha BG, Jadhav KM (2009) Structural and magnetic properties of In3+ substituted NiFe2O4 Mater. Chem. Phys. 117:163–168. https://doi.org/10.1016/j.matchemphys.2009.05.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr R. Brahimi (USTHB University) for her technical assistance. The authors also thank the financial support by the Faculty of Chemistry (Algiers).

Author information

Authors and Affiliations

Authors

Contributions

NH supervised the work, NH and MT discussed the results and wrote the manuscript. SA and NH performed the experiments, GR did the application part. NH and MT and YB discussed the results.

Corresponding authors

Correspondence to N. Helaili or M. Trari.

Ethics declarations

Conflict of interest

All authors declare that they have no financial or non-financial interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, S., Helaili, N., Rekhila, G. et al. Physical and photo-electrochemical properties of the spinel SrFe2O4: application to hydrogen production under visible light. J Mater Sci: Mater Electron 33, 9976–9987 (2022). https://doi.org/10.1007/s10854-022-07989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07989-1

Navigation