Skip to main content
Log in

Design of a single split-ring resonator-based microwave metamaterial for detection of the composition of vegetable oil and gasoline mixtures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aims to design and analyze a single split-ring resonator (SRR)-based microwave metamaterial able to detect the composition of vegetable oil and gasoline mixtures. The vegetable oil and gasoline mixture samples are attached to a single SRR-based microwave metamaterial. In this experiment, the single SRR microwave metamaterial is fabricated by scribing silver ink onto paper. The samples comprise 20%, 40%, 60%, and 80% vegetable oil and gasoline mixtures. The single SRR microwave metamaterial is able to detect the volume composition of the vegetable oil and gasoline mixtures by shifting resonance frequency between metamaterial samples with and without the mixtures of vegetable oil and gasoline. The Δf of metamaterials treated with 20%, 40%, 60%, and 80% mixtures of vegetable oil–gasoline samples obtained experimentally are 0.13 ± 0.054 GHz, 0.18 ± 0.056 GHz, 0.19 ± 0.098 GHz, and 0.25 ± 0.054 GHz, respectively. The permittivity and refractive indexes of the single SRR microwave metamaterial are significantly altered for vegetable oil and gasoline samples of varied compositions. Polarization in the SRR gap is the critical feature used to describe this study's detection ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Y. Nie, C.-X. Li, Z.-H. Wang, Ind. Eng. Chem. Res. 46, 5108 (2007)

    Article  CAS  Google Scholar 

  2. A. Keskin, M. Gürü, D. Altiparmak, K. Aydin, Renew. Energy 33, 553 (2008)

    Article  CAS  Google Scholar 

  3. J. Yanik, M.A. Uddin, K. Ikeuchi, Y. Sakata, Polym. Degrad. Stab. 73, 335 (2001)

    Article  CAS  Google Scholar 

  4. R. Altın, S. Cetinkaya, H.S. Yücesu, Energy Convers. Manage. 42, 529 (2001)

    Article  Google Scholar 

  5. S. Bhattacharyya, C.S. Reddy, J. Agric. Eng. Res. 57, 157 (1994)

    Article  Google Scholar 

  6. H. Hazar, H. Sevinc, S. Sap, Fuel 254, 115677 (2019)

    Article  CAS  Google Scholar 

  7. S. Simsek, S. Uslu, Fuel 280, 118613 (2020)

    Article  CAS  Google Scholar 

  8. R.T. Hitchcock, Radio-Frequency and Microwave Radiation (AIHA, 2004).

  9. J.S. Seybold, Introduction to RF Propagation (John Wiley & Sons, 2005).

  10. A. Zinevich, H. Messer, P. Alpert, J. Appl. Meteorol. Climatol. 48, 1317 (2009)

    Article  Google Scholar 

  11. E.M. Lassiter, in 1975 IEEE-MTT-S International Microwave Symposium (IEEE, 1975), p. 334.

  12. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, L.P. Kouwenhoven, Nature 395, 873 (1998)

    Article  CAS  Google Scholar 

  13. H. Vasudev, G. Singh, A. Bansal, S. Vardhan, L. Thakur, Mater. Res. Express 6, 102001 (2019)

    Article  CAS  Google Scholar 

  14. H.T. Yudistira, S. Liu, T.J. Cui, H. Zhang, Beilstein J. Nanotechnol. 9, 475 (2018)

    Article  Google Scholar 

  15. A. Rasad, H.T. Yudistira, F. Qalbina, A.G. Saputro, A. Faisal, Sens. Actuators A 332, 113208 (2021)

    Article  CAS  Google Scholar 

  16. A.P. Tenggara, S.J. Park, H.T. Yudistira, Y.H. Ahn, D. Byun, J. Micromech. Microeng. 27, 54 (2017)

    Article  Google Scholar 

  17. P. Nie, D. Zhu, Z. Cui, F. Qu, L. Lin, Y. Wang, Sens. Actuators B 307, 127642 (2020)

    Article  Google Scholar 

  18. B.D. Wiltshire, M.H. Zarifi, IEEE Microwave Wirel. Compon. Lett. 29, 65 (2018)

    Article  Google Scholar 

  19. A.A.M. Bahar, Z. Zakaria, M.K.M. Arshad, A.A.M. Isa, Y. Dasril, R.A. Alahnomi, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  20. O. Malyuskin, IEEE Sens. J. 20, 14817 (2020)

    Article  Google Scholar 

  21. H.T. Yudistira, M. Asril, Plasmonics 1, 14 (2021)

    Google Scholar 

  22. X. Chen, T.M. Grzegorczyk, B.-I. Wu, J. Pacheco Jr., J.A. Kong, Phys. Rev. E 70, 16608 (2004)

    Article  Google Scholar 

  23. H.T. Yudistira, M. Asril, Micro & Nano Lett. 16, 387 (2021)

    Article  CAS  Google Scholar 

  24. H.T. Yudistira, A.P. Tenggara, S.S. Oh, V. dat Nguyen, M. Choi, C. Choi, D. Byun, J. Micromech. Microeng. 25, 14 (2015)

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the Direktorat Sumber Daya, Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi (No. 081/E4.1/AK.04.PT/2021), World Class Research Program, for fully supporting this research. OS acknowledges this study as fulfilling final project course (MS4254).

Author information

Authors and Affiliations

Authors

Contributions

Mr. Sopian contributed to writing the manuscript, sample fabricating and measuring. Dr. Yudistira participated in the mathematical analysis, wrote the manuscript, and managed a research project. Ms Qalbina, Mr. Prahmana, Dr. Faisal and Dr. Saputro contributed to revising the manuscript and preparing samples.

Corresponding author

Correspondence to Hadi Teguh Yudistira.

Ethics declarations

Conflict interest

The corresponding author states that there is no conflict of interest on behalf of all authors.

Consent to participate

All authors participates in this work.

Consent to publish

All authors agree to publish this work.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sopian, O., Yudistira, H.T., Qalbina, F. et al. Design of a single split-ring resonator-based microwave metamaterial for detection of the composition of vegetable oil and gasoline mixtures. J Mater Sci: Mater Electron 33, 8151–8158 (2022). https://doi.org/10.1007/s10854-022-07964-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07964-w

Navigation