Skip to main content
Log in

Compact triple decagon split ring resonator metamaterial for liquid sensing applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper presents a metamaterial structure, known as a triple decagon split-ring resonator, which operates in the Ku-band frequency. The proposed structure has two different ground planes, a full ground plane and a structured ground plane. The aim of having these two ground planes is to determine which one gives a better S21 performance. A simulation was conducted to compare the S21 performance of the two structures. The results show that the metamaterial structure with the structured ground plane has better S21 performance compared to the metamaterial structure with the full ground plane. The structure with the structured ground plane has two resonance frequencies, 13.6 and 16.9 GHz, with S21 magnitudes of -38.4 dB and − 42.8 dB, respectively. The metamaterial structures were fabricated and measured using a vector network analyzer. The metamaterial structure with the structured ground plane was chosen to be used for liquid sensing, and oil was used in this study. Different types of oils – butter oil, castor oil, coconut oil, gasoline, kerosene, olive oil, palm seed oil, and sesame oil – were used. The resonance frequency shift of the metamaterial structure recorded a significant shift when the proposed metamaterial structure was measured experimentally and numerically. The average sensitivity of the metamaterial structure is 0.62, the Q-factor is 113.13, and the figure of merit (FOM) is 70.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Abdelhamid, A.A., Alotaibi, S.R.: Robust prediction of the Bandwidth of Metamaterial Antenna using deep learning. Computers Mater. Continua. 72(2), 2305–2321 (2022). https://doi.org/10.32604/cmc.2022.025739

    Article  Google Scholar 

  • Abdolrazzaghi, M., Daneshmand, M., Iyer, A.K.: Strongly enhanced sensitivity in planar microwave sensors based on metamaterial coupling. IEEE Trans. Microw. Theory Tech. 66(4), 1843–1855 (2018). https://doi.org/10.1109/tmtt.2018.2791942

    Article  ADS  Google Scholar 

  • Abdulkarim, Y.I., Deng, L., Karaaslan, M., Altıntaş, O., Awl, H.N., Muhammadsharif, F.F., Liao, C., Unal, E., Luo, H.: Novel metamaterials-based hypersensitized liquid sensor integrating omega-shaped resonator with microstrip transmission line. Sens. (Switzerland). 20(3) (2020a). https://doi.org/10.3390/s20030943

  • Abdulkarim, Y.I., Deng, L., Luo, H., Huang, S., Karaaslan, M., Altintas, O., Bakir, M., Muhammadsharif, F.F., Awl, H.N., Sabah, C., Al-Badri, K.S. L: Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J. Mater. Res. Technol. 9(5), 10291–10304 (2020b). https://doi.org/10.1016/j.jmrt.2020.07.034

    Article  Google Scholar 

  • Ali, H.O., Al-Hindawi, A.M., Abdulkarim, Y.I., Karaaslan, M.: New compact six-band metamaterial absorber based on Closed Circular Ring Resonator (CCRR) for radar applications. Opt. Commun. 503, 127457 (2022). https://doi.org/10.1016/J.OPTCOM.2021.127457

    Article  Google Scholar 

  • Altintaş, O., Aksoy, M., Ünal, E., Karaaslan, M.: Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. J. Electrochem. Soc. 166(6), B482–B488 (2019). https://doi.org/10.1149/2.1101906jes

    Article  Google Scholar 

  • Amiri, M., Member, S., Abolhasan, M., Member, S.: Remote Water Salinity Sensor using Metamaterial Perfect Absorber. IEEE Trans. Antennas Propag. 70(8), 6785–6794 (2022). https://doi.org/10.1109/TAP.2022.3161485

    Article  ADS  Google Scholar 

  • Bakır, M., Karaaslan, M., Karadag, F., Dalgac, S., Ünal, E., Akgöl, O.: Metamaterial sensor for transformer oil, and microfluidics. Appl. Comput. Electromagnet. Soc. J. 34(5), 799–806 (2019a)

    Google Scholar 

  • Bakır, M., Dalgaç, Ş., Karaaslan, M., Karadağ, F., Akgol, O., Unal, E., Depçi, T., Sabah, C.: A comprehensive study on fuel adulteration sensing by using Triple Ring Resonator Type Metamaterial. J. Electrochem. Soc. 166(12), B1044–B1052 (2019b). https://doi.org/10.1149/2.1491912jes

    Article  Google Scholar 

  • Banerjee, S., Dutta, P., Basu, S., Mishra, S.K., Appasani, B., Nanda, S., Abdulkarim, Y.I., Muhammadsharif, F.F., Dong, J., Jha, A.V., Bizon, N., Thounthong, P.: A New Design of a Terahertz Metamaterial Absorber for Gas sensing applications. Symmetry. 15(1) (2023). https://doi.org/10.3390/sym15010024

  • Bhatti, M.H., Jabbar, M.A., Khan, M.A., Massoud, Y.: Low-cost microwave sensor for characterization and Adulteration Detection in Edible Oil. Appl. Sci. (Switzerland). 12(17) (2022). https://doi.org/10.3390/app12178665

  • Bilal, R.M.H., Saeed, M.A., Naveed, M.A., Zubair, M., Mehmood, M.Q., Massoud, Y.: Nickel-based high-bandwidth Nanostructured Metamaterial Absorber for visible and infrared spectrum. Nanomaterials. 12(19), 1–13 (2022). https://doi.org/10.3390/nano12193356

    Article  Google Scholar 

  • Chen, K.L., Ruan, C., Zhan, F., Song, X., Fahad, A.K., Zhang, T., Shi, W.: Ultra-sensitive terahertz metamaterials biosensor based on luxuriant gaps structure. IScience. 26(1), 105781 (2023a). https://doi.org/10.1016/j.isci.2022.105781

    Article  ADS  Google Scholar 

  • Chen, B., Yang, S., Yang, R., Zhang, Z., Shen, X., Tang, Y., Wang, P.: A Common-Mode Voltage Suppression Oriented Modulation Method for Modular Multilevel Converters. 2023a IEEE 3rd International Conference on Power, Electronics and Computer Applications, ICPECA 2023, 104–108. (2023b). https://doi.org/10.1109/ICPECA56706.2023.10076106

  • Chowdhury, M.Z.B., Islam, M.T., Alzamil, A., Soliman, M.S., Samsuzzaman, M.: A tunable star-shaped highly sensitive microwave sensor for solid and liquid sensing. Alexandria Eng. J. 86(July 2023), 644–662 (2024). https://doi.org/10.1016/j.aej.2023.12.001

    Article  Google Scholar 

  • Dalgac, S., Baklr, M., Karadag, F., Karaaslan, M., Akgol, O., Unal, E., Sabah, C.: Microfluidic sensor applications by using chiral metamaterial. Mod. Phys. Lett. B. 34(5), 1–14 (2020). https://doi.org/10.1142/S0217984920500311

    Article  Google Scholar 

  • Detection, U., Dielectric, A., Podunavac, I., Radonic, V.: Microwave Spoof Surface Plasmon Polariton-Based Sensor for. (2021)

  • El-Kenawy, E.S.M., Ibrahim, A., Mirjalili, S., Zhang, Y.D., Elnazer, S., Zaki, R.M.: Optimized Ensemble Algorithm for Predicting Metamaterial Antenna parameters. Computers Mater. Continua. 71(2), 4989–5003 (2022). https://doi.org/10.32604/cmc.2022.023884

    Article  Google Scholar 

  • Geng, Z., Zhang, X., Fan, Z., Lv, X., Chen, H.: A Route to Terahertz Metamaterial Biosensor Integrated with Microfluidics for Liver Cancer Biomarker Testing in Early Stage. Sci. Rep. 7(1), 1–11 (2017). https://doi.org/10.1038/s41598-017-16762-y

    Article  Google Scholar 

  • Islam, M.T., Hoque, A., Almutairi, A.F., Amin, N.: Left-handed metamaterial-inspired unit cell for S-Band glucose sensing application. Sens. (Switzerland). 19(1), 1–12 (2019). https://doi.org/10.3390/s19010169

    Article  Google Scholar 

  • Islam, M.R., Islam, M.T., Hoque, A., Soliman, M.S., Bais, B., Sahar, N.M., Almalki, S.H.A.: Tri Circle Split Ring Resonator shaped Metamaterial with Mathematical modeling for oil concentration sensing. IEEE Access. 9, 161087–161102 (2021). https://doi.org/10.1109/ACCESS.2021.3131905

    Article  Google Scholar 

  • Islam, M.R., Islam, M.T., Salaheldeen, M., Bais, M., Almalki, B., Alsaif, S.H.A., H., Islam, M.S.: Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application. Sci. Rep. 12(1), 1–18 (2022). https://doi.org/10.1038/s41598-022-10729-4

    Article  Google Scholar 

  • Jain, P., Chhabra, H., Chauhan, U., Prakash, K., Gupta, A., Soliman, M.S., Islam, M.S., Islam, M.T.: Machine learning assisted hepta band THz metamaterial absorber for biomedical applications. Sci. Rep. 13(1), 1–12 (2023). https://doi.org/10.1038/s41598-023-29024-x

    Article  Google Scholar 

  • Jairath, K., Singh, N., Shabaz, M., Jagota, V., Singh, B.K.: Performance analysis of metamaterial-inspired structure loaded antennas for narrow range Wireless Communication. Sci. Program. 2022 (2022). https://doi.org/10.1155/2022/7940319

  • Kai Boon, W., Abidin, Z., Z., Isa Ashyap, A.Y.: Designing of Microwave Metamaterial Biosensor for Water Pollution Monitoring. J. Electron. Voltage Application. 2(2), 36–44 (2021). https://doi.org/10.30880/jeva.2021.02.02.004

    Article  Google Scholar 

  • Khalil, M.A., Yong, W.H., Islam, M.T., Hoque, A., Islam, M.S., leei, C.C., Soliman, M.S.: Double-negative metamaterial square enclosed Q.S.S.R For microwave sensing application in S-band with high sensitivity and Q-factor. Scientific Reports 2023 13:1, 13(1), 1–17. (2023). https://doi.org/10.1038/s41598-023-34514-z

  • Kiani, S., Rezaei, P., Karami, M., Sadeghzadeh, R.A.: Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose. IET Wirel. Sens. Syst. 9(1), 1–5 (2019). https://doi.org/10.1049/iet-wss.2018.5044

    Article  Google Scholar 

  • Lee, G., Lee, D., Park, J., Jang, Y., Kim, M., Rho, J.: Piezoelectric energy harvesting using mechanical metamaterials and phononic crystals. Commun. Phys. 5(1), 1–16 (2022). https://doi.org/10.1038/s42005-022-00869-4

    Article  Google Scholar 

  • Mosbah, S., Zebiri, C., Sayad, D., Elfergani, I., Bouknia, M.L., Mekki, S., Zegadi, R., Palandoken, M., Rodriguez, J., Abd-Alhameed, R.A.: Compact and highly sensitive Bended Microwave Liquid Sensor based on a Metamaterial Complementary Split-Ring Resonator. Appl. Sci. (Switzerland). 12(4) (2022). https://doi.org/10.3390/app12042144

  • Muhammed Hunize, C.V., Joseph, M.A., Murali, K.P.: Synthesis and characterization of calcium titanate-filled Butyl Rubber composites for flexible microwave substrate applications. J. Electron. Mater. 52(7), 5022–5034 (2023). https://doi.org/10.1007/s11664-023-10448-0

    Article  ADS  Google Scholar 

  • Qureshi, S.A., Abidin, Z.Z., Ashyap, A.Y.I., Majid, H.A., Kamarudin, M.R., Yue, M., Zulkipli, M.S., Nebhen, J.: Millimetre-Wave Metamaterial-based sensor for characterisation of cooking oils. Int. J. Antennas Propag. 2021 (2021). https://doi.org/10.1155/2021/5520268

  • Rashedul Islam, M., Tariqul Islam, M., Hoque, A., Alshammari, A.S., Alzamil, A., Alsaif, H., Samsuzzaman, M., Soliman, M.S.: Star enclosed circle split ring resonator-based metamaterial sensor for fuel and oil adulteration detection. Alexandria Eng. J. 67, 547–563 (2023). https://doi.org/10.1016/j.aej.2023.01.001

    Article  Google Scholar 

  • Sakib, S., Hoque, A., Rahim, S.K.B.A., Singh, M., Sahar, N.M., Islam, M.S., Soliman, M.S., Islam, M.T.: A central spiral Split rectangular-shaped Metamaterial Absorber surrounded by polarization-insensitive Ring Resonator for S-Band Applications. Materials. 16(3) (2023). https://doi.org/10.3390/ma16031172

  • Shaw, T., Mitra, D.: Electromagnetic metamaterial based sensor design for chemical discrimination. IEEE MTT-S Int. Microw. RF Conf. IMaRC 2017. 2018–Januac, 271–274 (2018). https://doi.org/10.1109/IMaRC.2017.8611244

    Article  Google Scholar 

  • Shruti, P.S., Appasani, B., Srinivasulu, A., Bizon, N., Thounthong, P.: A reconfigurable Terahertz Metamaterial Absorber for Gas sensing applications. Crystals. 13(2), 1–15 (2023). https://doi.org/10.3390/cryst13020158

    Article  Google Scholar 

  • Siddiky, A.M., Faruque, M.R.I., Abdullah, S., Islam, M.T., Khandaker, M.U., Al-Mugren, K.S.: Dual square split ring enclosed spiral shaped hybrid metamaterial resonator with size miniaturisation for microwave wireless applications. Sci. Rep. 12(1), 1–19 (2022). https://doi.org/10.1038/s41598-022-11993-0

    Article  Google Scholar 

  • Tamer, A., Karadağ, F., Ünal, E., Abdulkarim, Y.I., Deng, L., Altintas, O., Bakır, M., Karaaslan, M.: Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel. Chem. Phys. Lett. 742(February), 137169 (2020). https://doi.org/10.1016/j.cplett.2020.137169

    Article  Google Scholar 

  • Wang, B.X., Xu, C., Duan, G., Jiang, J., Xu, W., Yang, Z., Wu, Y.: Miniaturized and actively tunable Triple-Band Terahertz Metamaterial Absorber using an analogy I-Typed resonator. Nanoscale Res. Lett. 17(1) (2022). https://doi.org/10.1186/s11671-022-03677-5

  • Wang, Y., Qiu, Y., Zhang, Y., Lang, T., Zhu, F.: High-sensitivity temperature Sensor based on the Perfect Metamaterial Absorber in the Terahertz Band. Photonics. 10(1) (2023). https://doi.org/10.3390/photonics10010092

  • Zhao, B., Thomsen, H.R., De Ponti, J.M., Riva, E., Van Damme, B., Bergamini, A., Chatzi, E., Colombi, A.: A graded metamaterial for broadband and high-capability piezoelectric energy harvesting. Energy. Conv. Manag. 269(August), 116056 (2022). https://doi.org/10.1016/j.enconman.2022.116056

    Article  Google Scholar 

  • Zhu, H., Zhang, Y., Ye, L., Li, Y., Dang, Z., Xu, R., Yan, B.: A high Q-factor Metamaterial Absorber and its refractive index sensing characteristics. IEEE Trans. Microwave Theory Tech. 70(12), 5383–5391 (2022). https://doi.org/10.1109/TMTT.2022.3218041

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Higher Education (MOHE) Malaysia, research grant code: FRGS/1/2021/TK0/UKM/01/6 and The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, funded this project, under grant no. KEP-Msc-41-135-43.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.F.M.R and A.H.; methodology, N.F.M.R and A.H.; software, A.H.; validation, A.H., N.M.S. and M.T.I.; formal analysis, N.F.M.R. and A.H.; resources, M.T.I.; data curation, N.F.M.R.; writing—original draft preparation, N.F.M.R.; writing—review and editing, A.H.; visualization, N.M.S.; supervision, A.H. and N.M.S.; funding acquisition, M.T.I, H.R., M.S.S and S.A. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Norsuzlin Mohd Sahar.

Ethics declarations

Ethical approval

The authors declare that there are no conflicts of interest related to this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razali, N.F.M., Sahar, N.M., Hoque, A. et al. Compact triple decagon split ring resonator metamaterial for liquid sensing applications. Opt Quant Electron 56, 874 (2024). https://doi.org/10.1007/s11082-024-06811-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-024-06811-y

Keywords

Navigation