Skip to main content

Advertisement

Log in

Fabrication and analysis of emerging electrochromic nanomaterial membrane device for smart applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrochromic nanomaterial membrane (ENM) Device is fabricated utilizing sputter technique on ITO glass substrates integrating with Ag NW-doped WO3 as electrochromic film, PEO as electrolyte and H+Nb2O5 as counter electrode that grab intensified concept in smart applications mostly as switchable displays. Optical analysis of the newly developed and fabricated ENM Nanosystem device is examined and compared with the existing and analogous nanostructured devices of the era. The ENM device is observed to possess a peak bleaching transmittance of 91% at 515 nm, which is ~ 8% enriched in visible spectrum in contrast to the existing nanomaterial membrane device. Transmittance modulation of ENM is calculated to be 76.6%. The faster switching of the ENM for electric dimming is observed to hold with 25, 33 and 30 s of increment at 500, 550 and 600 nm, respectively. Also the voltage variation for the ENM is analysed over − 2 V to + 2.5 V that provide a detailed and spacious changing across the full spectrum range. The cyclic voltammetry (CV) measurement on the entire Nanocomposite ENM Device revealed contraction of current density due to carrier confinement effect by coagulation of both EC and counter electrode membranes and thereby the quantifiable Formal Reduction Potential of the device is acquired owing to simultaneous ion confinement as well as carrier transition. The electrochemical response of the two electrodes on ITO-coated glass substrate as well as the entire nanocomposite-based membrane device entail the novel ENM device to be an excellent solution with appropriateness and superior efficiency for smart applications and approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or material data discussed in this manuscript, hence all data are available and is included in the manuscript.

Code availability

The authors have no software application or custom code in the manuscript.

References

  1. L.M. Carl, Solar Energy Mater. 11, 1–27 (1984)

    Article  Google Scholar 

  2. Z.O. Crnjak, M.G. Hutchins, G. McMeeking, Sol. Energy Mater. Sol. Cells 30(4), 327–337 (1993)

    Article  Google Scholar 

  3. J.R. Platt, J. Chem. Phys. 34(3), 862–863 (1961)

    Article  CAS  Google Scholar 

  4. R. Sivakumar, M. Jayachandran, C. Sanjeeviraja, Surf. Eng. 20(5), 385–390 (2004)

    Article  CAS  Google Scholar 

  5. S.J. Yoo, J.W. Lim, S. Yung-Eun, Sol. Energy Mater. Sol. Cells 90(4), 477–484 (2006)

    Article  CAS  Google Scholar 

  6. I. Porqueras, E. Bertran, Thin Solid Films 398, 41–44 (2001)

    Article  Google Scholar 

  7. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 99, 1–13 (2012)

    Article  CAS  Google Scholar 

  8. S.V. Green, E. Pehlivan, C.G. Granqvist, G.A. Niklasson, Sol. Energy Mater. Sol. Cells 99, 339–344 (2012)

    Article  CAS  Google Scholar 

  9. C. Knittlmayer, H.J. Muffler, C.H.-H. Fischer, W. Weppner, Ionics 12(2), 127–130 (2006)

    Article  CAS  Google Scholar 

  10. L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, Sci. Rep. 3, 1936 (2013)

    Article  Google Scholar 

  11. R. Marcilla, F. Alcaide, H. Sardon, J.A. Pomposo, C. Pozo-Gonzalo, D. Mecerreyes, Electrochem. Commun. 8(3), 482–488 (2006)

    Article  CAS  Google Scholar 

  12. J.Y. Wang, M.C. Wang, D.J. Jan, J. Mater. Sci. Chem. Eng. 3(07), 136 (2015)

    Article  Google Scholar 

  13. M.C. Wang, C. Yung-Chih, H. Ming-Hao, Y.C. Li, J.Y. Wang, J.Y. Wu, W.F. Tsai, J. Der-Jun, AIP Adv. 6(11), 115009 (2016)

    Article  Google Scholar 

  14. N. Akkurt, S. Pat, M. Reza, O. Mustafa, U. Demirkol, O. Ali, K. Sadan, J. Mater. Sci.: Mater. Electron. 31, 9568–9578 (2020)

    CAS  Google Scholar 

  15. J. Phuriwat, B. Simona, S.M.N. Lek, V.V.T. Sikong, J. Sci.: Adv. Mater. Dev. 2, 286–300 (2017)

    Google Scholar 

  16. S.W. Kawk, S.K. Wang, S.Y. Debbie, X. Jianwei, Polymers 11(11), 1839 (2019)

    Article  Google Scholar 

  17. C.G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201–262 (2000)

    Article  CAS  Google Scholar 

  18. D. Choi, M. Lee, H. Kim, S.W. Chu, M.D. Chun, S.H. Ahn, C.S. Lee, Sol. Energy Mater. Sol. Cells 174, 599–606 (2018)

    Article  CAS  Google Scholar 

  19. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, J. Mater. Sci.: Mater. Electron. 28, 14855–14863 (2017)

    CAS  Google Scholar 

  20. D.M. Doriana, J. Phys: Conf. Ser. 682(012004), 1–10 (2016)

    Google Scholar 

  21. K. Gesheva, T. Ivanova, G. Bodurov, I.M. Szilágyi, N. Justh, O. Kéri, S. Orsolya et al., J. Phys.: Conf. Ser. 682(012011), 1–15 (2016)

    Google Scholar 

  22. G. Bodurov, T. Ivanova, M. Aleksandrova, K. Gesheva, J. Phys.: Conf. Ser. 356(012016), 1–6 (2012)

    Google Scholar 

  23. A. Pawlicka, C. Avellaneda, A.M. Aegerter, J. Mater. Sci. 33, 2181–2185 (1998)

    Article  Google Scholar 

  24. V. Madhavi, P. Kondaiah, M.O. Hussain, S. Uthanna, Physica B 454, 141–147 (2014)

    Article  CAS  Google Scholar 

  25. A. Llordés, Y. Wang, M.F. Alejandro, P. Xiao, T. Lee, A. Poulain, O. Zandi, S.A.C. Cabezas, G. Henkelman, D.J. Milliron, Nat. Mater. 15, 1267 (2016)

    Article  Google Scholar 

  26. M. Wang, A. Barnabé, Y. Thimont, J. Wang, Y. He, Q. Liu, X. Zhong, G. Dong, J. Yang, X. Diao, Electrochim. Acta 301, 200–208 (2019)

    Article  CAS  Google Scholar 

  27. C.C. Chen, J. Nanomater., vol 2013, Article ID 785023 (2013)

  28. A. Azam, J. Kim, J. Park, T. G. Novak, A. P. Tiwari, S. H. Song, B. Kim, S. Jeon, Nano Lett., 1–18 (2018)

  29. S. Talukdar, R.S. Dhar, J. Phys. 1706, 012210 (2020)

    CAS  Google Scholar 

  30. X. Sun, Z. Liu, H. Cao, J. Alloys Compd. 504(1), S418–S421 (2010)

    Article  Google Scholar 

  31. P.M. Kadam, N.L. Tarwal, P.S. Shinde et al., J. Alloys Compd. 509(5), 1729–1733 (2011)

    Article  CAS  Google Scholar 

  32. N.N. Dinh, D.H. Ninh, T.T. Thao, T.V. Van, J. Nanomater. 62(3), 229–244 (2012)

    Google Scholar 

  33. R.S. Dhar, A. Elezzabi, AMd. Al-Hussein, SDRP J. Nanotechnol. Mater. Sci. 1(1), 1–14 (2016)

    Google Scholar 

  34. S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82(7), 3334–3340 (1997)

    Article  CAS  Google Scholar 

  35. S. Talukdar, R.S. Dhar, K. Kumar, ICAECT (2021). https://doi.org/10.1109/ICAECT49130.2021.9392424

    Article  Google Scholar 

  36. A.M. Raba, J.B. Ruíz, M.R. Joya, Mater. Res. 19, 1381–1387 (2016)

    Article  CAS  Google Scholar 

  37. R.Q. Yang, (Gordon & Breach Pub., Singapore 2000), Chap. 2

  38. H. Callebaut, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Appl. Phys. Lett. 83, 207–209 (2003)

    Article  CAS  Google Scholar 

  39. B.S. Williams, Nat. Photon. 1, 517–525 (2007)

    Article  CAS  Google Scholar 

  40. R.S. Dhar, L. Li, H. Ye, S.G. Razavipour, X. Wang, R.Q. Yang, D. Ban, Laser Photon. Rev. 9(2), 224–230 (2015)

    Article  CAS  Google Scholar 

  41. J. García-Cañadas, I. Mora-Seró, F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, J. Electroanal. Chem. 565(2), 329–334 (2004)

    Article  Google Scholar 

  42. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. sEduc. 95(2), 197–206 (2018)

    Article  CAS  Google Scholar 

  43. M. Aller Pellitero, A. Guimerà, R. Villa, del Campo, J. Phys. Chem. C 122(5), 2596–2607 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DST-NanoMission for providing financial support to carry out this work.

Funding

The experimental setup and work was carried out under DST-NanoMission project, Govt. of India, grant no. DST/NM/NT/1062/2016.

Author information

Authors and Affiliations

Authors

Contributions

S.T. conducted the experimental wok and analysis of the device data, and prepared the figures as the first author. R.S.D. being Supervisor of S.T. initiated the research and developed the physics and the experimental setup and related details while also contributed to establishing the novel idea and improvements in the manuscript. R.S.D. is the corresponding author who planned and coordinated the study, contributed to the data analysis and wrote to develop the manuscript. Therefore, both the authors discussed the results and contributed to the manuscript at various stages.

Corresponding author

Correspondence to Rudra Sankar Dhar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest financially or otherwise that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, S., Dhar, R.S. Fabrication and analysis of emerging electrochromic nanomaterial membrane device for smart applications. J Mater Sci: Mater Electron 33, 23937–23948 (2022). https://doi.org/10.1007/s10854-022-07878-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07878-7

Navigation