Skip to main content
Log in

Evaluation of a reliable electrochromic device based on PEDOT:PSS-TiO2 heterostructure fabricated at low temperature

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-TiO2 composite layer was fabricated using a nanoparticle deposition system (NPDS) followed by spin coating process. The charge balance and transmittance change of electrochromic (EC) devices were investigated with different electrolytes, such as LiClO4-based polymer electrolyte and ionic liquid (IL). It was found that the EC properties could be improved using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) with high ionic conductivity, and a symmetric charge balance change can be obtained showing rapid switching. The PEDOT:PSS-TiO2 composite exhibited stable performance without degradation after 500 cycles, maintaining the same cyclic voltammetry (CV) curve. It seems that heterostructure of TiO2 with PEDOT:PSS showed good separation of electrons and holes, making TiO2 an efficient electron transport material with PEDOT:PSS being an efficient hole transport material. Thus, it was found that the organic-inorganic structure obtained by our simple and novel process was effective in improving EC properties due to efficient separation of electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110(1):268–320

    Article  CAS  Google Scholar 

  2. Lampert CM (2003) Large-area smart glass and integrated photovoltaics. Sol Energy Mater Sol Cells 76(4):489–499

    Article  CAS  Google Scholar 

  3. Monk PM, Delage F, Vieira SMC (2001) Electrochromic paper: utility of electrochromes incorporated in paper. Electrochim Acta 46(13):2195–2202

    Article  CAS  Google Scholar 

  4. Tehrani P, Hennerdal L-O, Dyer AL, Reynolds JR, Berggren M (2009) Improving the contrast of all-printed electrochromic polymer on paper displays. J Mater Chem 19(13):1799–1802

    Article  CAS  Google Scholar 

  5. Gillaspie DT, Tenent RC, Dillon AC (2010) Metal-oxide films for electrochromic applications: present technology and future directions. J Mater Chem 20(43):9585–9592

    Article  CAS  Google Scholar 

  6. Thakur VK, Ding G, Ma J, Lee PS, Lu X (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24(30):4071–4096

    Article  CAS  Google Scholar 

  7. Deb S (1969) A novel electrophotographic system. Appl Opt 8(101):192–195

    Article  Google Scholar 

  8. Cummins D, Boschloo G, Ryan M, Corr D, Rao SN, Fitzmaurice D (2000) Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J Phys Chem B 104(48):11449–11459

    Article  CAS  Google Scholar 

  9. Lu W, Fadeev AG, Qi B, Mattes BR (2004) Fabricating conducting polymer electrochromic devices using ionic liquids. J Electrochem Soc 151(2):H33–H39

    Article  CAS  Google Scholar 

  10. Thompson BC, Schottland P, Zong K, Reynolds JR (2000) In situ colorimetric analysis of electrochromic polymers and devices. Chem Mater 12(6):1563–1571

    Article  CAS  Google Scholar 

  11. Xu C, Liu L, Legenski SE, Ning D, Taya M (2004) Switchable window based on electrochromic polymers. J Mater Res 19(07):2072–2080

    Article  CAS  Google Scholar 

  12. Corradini A, Marinangeli A, Mastragostino M (1990) Ito as counter-electrode in a polymer based electrochromic device. Electrochim Acta 35(11–12):1757–1760

    Article  CAS  Google Scholar 

  13. Ling H, Lu J, Phua S, Liu H, Liu L, Huang Y, Mandler D, Lee PS, Lu X (2014) One-pot sequential electrochemical deposition of multilayer poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. J Mater Chem A 2(8):2708–2717

    Article  CAS  Google Scholar 

  14. Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Karki AB, Young DP, Guo Z (2011) Polyaniline-tungsten oxide metacomposites with tunable electronic properties. J Mater Chem 21(2):342–348

    Article  CAS  Google Scholar 

  15. Liu S, Xu L, Li F, Guo W, Xing Y, Sun Z (2011) Carbon nanotubes-assisted polyoxometalate nanocomposite film with enhanced electrochromic performance. Electrochim Acta 56(24):8156–8162

    Article  CAS  Google Scholar 

  16. Sakai N, Prasad GK, Ebina Y, Takada K, Sasaki T (2006) Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite films for switching of electric conductivity in response to ultraviolet and visible light. Chem Mater 18(16):3596–3598

    Article  CAS  Google Scholar 

  17. Ma L, Li Y, Yu X, Yang Q, Noh C-H (2008) Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability. Sol Energy Mater Sol Cells 92(10):1253–1259

    Article  CAS  Google Scholar 

  18. Huang S-W, Ho K-C (2006) An all-thiophene electrochromic device fabricated with poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene). Sol Energy Mater Sol Cells 90(4):491–505

    Article  CAS  Google Scholar 

  19. Smela E (1998) Thiol-modified pyrrole monomers: 4. Electrochemical deposition of polypyrrole over 1-(2-thioethyl) pyrrole. Langmuir 14(11):2996–3002

    Article  CAS  Google Scholar 

  20. Sayre CN, Collard DM (1995) Self-assembled monolayers of pyrrole-containing alkanethiols on gold. Langmuir 11(1):302–306

    Article  CAS  Google Scholar 

  21. Chun D-M, Ahn S-H (2011) Deposition mechanism of dry sprayed ceramic particles at room temperature using a nano-particle deposition system. Acta Mater 59(7):2693–2703

    Article  CAS  Google Scholar 

  22. Chun D-M, Choi J-O, Lee CS, Kanno I, Kotera H, Ahn S-H (2012) Nano-particle deposition system (NPDS): low energy solvent-free dry spray process for direct patterning of metals and ceramics at room temperature. Int J Precis Eng Manuf 13(7):1107–1112

    Article  Google Scholar 

  23. Kyubong J, Woojin S, Doo-Man C, Yang-Hee K, Jun-Cheol Y, Min-Saeng K, Sung-Hoon A, Caroline Sunyong L (2010) Nickel line patterning using silicon supersonic micronozzle integrated with a nanoparticle deposition system. Jpn J Appl Phys 49(5S1):05EC09

    Google Scholar 

  24. Song W, Jung K, D-M C, S-H A, Lee CS (2010) Deposition of Al2O3 powders using nano-particle deposition system. Surf Rev Lett 17(02):189–193. doi:10.1142/S0218625X10013710

    Article  CAS  Google Scholar 

  25. Kim K-S, Lee J, Kim YH, Lee CS (2013) Effect of scanning speed on copper line deposition using nanoparticle deposition system (NPDS) for direct printing technology. Aerosol Sci Technol 47(1):106–113

    Article  CAS  Google Scholar 

  26. Kim H, Yang S, Ahn S-H, Lee CS (2016) Effect of particle size on various substrates for deposition of NiO film via nanoparticle deposition system. Thin Solid Films 600:109–118

    Article  CAS  Google Scholar 

  27. Kim H, Yang S, Pawar RC, Ahn S-H, Lee CS (2015) Role of TiO2 nanoparticles in the dry deposition of NiO micro-sized particles at room temperature. Ceram Int 41(4):5937–5944

    Article  CAS  Google Scholar 

  28. Yang S, Kim H, Ahn S-H, Lee CS (2015) The effect of the agglomerated microstructure of dry-deposited TiO2 electrodes on the performance of dye-sensitized solar cells. Electrochim Acta 166:117–123

    Article  CAS  Google Scholar 

  29. Ahn S-H (2014) An evaluation of green manufacturing technologies based on research databases. Int J Precis Eng Manuf Green Technol 1(1):5–9

    Article  Google Scholar 

  30. Park S-I, Kim S, Choi J-O, Song J-H, Taya M, Ahn S-H (2015) Low-cost fabrication of WO 3 films using a room temperature and low-vacuum air-spray based deposition system for inorganic electrochromic device applications. Thin Solid Films 589:412–418

    Article  CAS  Google Scholar 

  31. Kim H, Park Y, Choi D, Ahn S-H, Lee CS (2016) Novel fabrication of an electrochromic antimony-doped tin oxide film using a nanoparticle deposition system. Appl Surf Sci 377:370–375

    Article  CAS  Google Scholar 

  32. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297(5583):983–987

    Article  CAS  Google Scholar 

  33. Zhang AJ, Qi XM, Du YF, Luo YW, Fang HJ, Lu JX (2006) Electropolymerization of 3-methylthiophene in [BMIM] PF6 ionic liquid, characterization and application. Chin J Chem 24(5):609–612

    Article  CAS  Google Scholar 

  34. Ribeiro A, Machado D, dos Santos Filho PF, De Paoli M-A (2004) Solid-state electrochromic device based on two poly (thiophene) derivatives. J Electroanal Chem 567(2):243–248

    Article  CAS  Google Scholar 

  35. Won J, Kim D, Kim H (2004) Ionic liquids for electrolytes. J Polym Sci Technol 15(4):449–456

    Google Scholar 

  36. Sekiguchi K, Atobe M, Fuchigami T (2002) Electropolymerization of pyrrole in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room temperature ionic liquid. Electrochem Commun 4(11):881–885

    Article  CAS  Google Scholar 

  37. Sekiguchi K, Atobe M, Fuchigami T (2003) Electrooxidative polymerization of aromatic compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate room-temperature ionic liquid. J Electroanal Chem 557:1–7

    Article  CAS  Google Scholar 

  38. Rogers RD, Seddon KR (2003) Ionic liquids—solvents of the future? Science 302(5646):792–793

    Article  Google Scholar 

  39. Park S, Yi C, Kim H, Cho W, Cho B, Yun K, An C, Woo K (1995) Electrical and optical properties of electrochromic window with both lithium and proton conducting polymer electrolytic media. J Korean Inst Surf Eng 28(1):46–54

    CAS  Google Scholar 

  40. Stenman A (2013) Electrochromic properties of nickel oxide in different electrolytes. Dissertation, Uppsala University

  41. Bohnke C, Bohnke O (1990) Impedance analysis of amorphous WO3 thin films in hydrated LiClO4-propylene carbonate electrolytes. Solid State Ionics 39(3–4):195–204

    Article  CAS  Google Scholar 

  42. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Methods to study the ionic conductivity of polymeric electrolytes using ac impedance spectroscopy. J Solid State Electrochem 6(1):8–15

    Article  CAS  Google Scholar 

  43. Takagi S, Makuta S, Veamatahau A, Otsuka Y, Tachibana Y (2012) Organic/inorganic hybrid electrochromic devices based on photoelectrochemically formed polypyrrole/TiO2 nanohybrid films. J Mater Chem 22(41):22181–22189

    CAS  Google Scholar 

  44. Hepel M, Redmond H (2009) Large cation model of dissociative reduction of electrochromic WO3− x films. Open Chem 7(2):234–245

    Article  CAS  Google Scholar 

  45. Hepel M, Redmond H, Dela I (2007) Electrochromic WO 3− x films with reduced lattice deformation stress and fast response time. Electrochim Acta 52(11):3541–3549

    Article  CAS  Google Scholar 

  46. Shiyanovskaya I, Hepel M, Tewksburry E (2000) Electrochromism in electrodeposited nanocrystalline WO~ 3 films I. Electrochemical and optical properties. J New Mater Electrochem Syst 3(3):241–248

    CAS  Google Scholar 

  47. Nah Y-C, San Choi W, Kim D-Y (2008) Preparation and electrochromic properties of spin self-assembled polyelectrolyte multilayer films composed of PEDOT: PSS and PAH. Sol Energy Mater Sol Cells 92(12):1547–1551

    Article  CAS  Google Scholar 

  48. Ling H, Liu L, Lee PS, Mandler D, Lu X (2015) Layer-by-layer assembly of PEDOT: PSS and WO 3 nanoparticles: enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochim Acta 174:57–65

    Article  CAS  Google Scholar 

  49. Liao J, Ho K (2005) A photoelectrochromic device using a PEDOT thin film. J New Mater Electrochem Syst 8:37–47

    CAS  Google Scholar 

  50. Lu J, Song H, Li S, Wang L, Han L, Ling H, Lu X (2015) A poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application. Thin Solid Films 584:353–358

    Article  CAS  Google Scholar 

  51. Jin ZC, Hamberg I, Granqvist C (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64(10):5117–5131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Energy Efficiency & Resources Core Technology and Human Resources Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (Grant No. 20142020103730 and No. 20154030200680). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of education) (No.NPF-2016R1D1A1A02936936).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Sunyong Lee.

Electronic supplementary material

ESM 1

(DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, K., Choi, D. et al. Evaluation of a reliable electrochromic device based on PEDOT:PSS-TiO2 heterostructure fabricated at low temperature. Ionics 23, 2465–2474 (2017). https://doi.org/10.1007/s11581-017-2192-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2192-9

Keywords

Navigation