Skip to main content
Log in

Formation of a Ti → TiO2-graded layer and its effect on the memristive properties of TiOx(/Ti/TiOx) structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study DC reactive HiPIMS-sputtered TiOx/Ti/TiOx and TiOx-based memristors were fabricated. Metallic Ti layer was created on TiO2 next to the bottom electrode, expected to create a soft transition from metallic state to TiO2 as oxygen purged into the chamber. Each structure roughness remained well below nm. The band gap of thin-pure TiO2 was found as 3.52 eV and 3.80 eV for TiO2 with intermetallic layer from absorption measurements. Raman analysis indicates rutile and anatase phases. Ti6O11, TiO2, TiO2 (rutile), TiO2 (anatase), and Ti3O5 phases from each sample are identified from XRD measurements. The memristive characteristics of both the devices were determined by time-dependent current–voltage (IVt) measurements and current transport mechanisms were investigated in terms of pinched hysteresis of IVt loops. The devices with Ti → TiO2 transition layer exhibited much larger hysteresis area in comparison pure TiO2-based devices. All of the devices exhibited Fowler–Nordheim tunneling, Schottky emission, Space-Charge-Limited Conduction, and Poole–Frenkel emission, which depended on the voltage scanning direction and order of loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. O.N. Tufte, P.W. Chapman, Electron mobility in semiconducting strontium titanate. Phys. Rev. 155, 796 (1967)

    Article  CAS  Google Scholar 

  2. S. Sanna, V. Esposito, J.W. Andreasen, J. Hjelm, W. Zhang, T. Kasama, S.B. Simonsen, M. Christensen, S. Linderoth, N. Pryds, Enhancement of the chemical stability in confined δ-Bi2O3. Nat. Mater. 14, 500 (2015). https://doi.org/10.1038/NMAT4266

    Article  CAS  Google Scholar 

  3. F. Gunkel, D.V. Christensen, Y.Z. Chen, N. Pryds, Oxygen vacancies: the (in)visible friend of oxide electronics. Appl. Phys. Lett. 116, 120505 (2020). https://doi.org/10.1063/1.5143309

    Article  CAS  Google Scholar 

  4. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18, 507 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  5. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80 (2008). https://doi.org/10.1038/nature06932

    Article  CAS  Google Scholar 

  6. H. Efeoglu, S. Güllülü, T. Karacali, Resistive switching of reactive sputtered TiO2 based memristor in crossbar geometry. Appl. Surf. Sci. 350, 10 (2015). https://doi.org/10.1016/j.apsusc.2015.03.088

    Article  CAS  Google Scholar 

  7. S. Hu, J. Yue, C. Jiang, X. Tang, X. Huang, Z. Du, C. Wang, Resistive switching behavior and mechanism in flexible TiO2@Cf memristor crossbars. Ceram. Int. 45, 10182 (2019). https://doi.org/10.1016/j.ceramint.2019.02.068

    Article  CAS  Google Scholar 

  8. F. Pan, C. Chen, Z.S. Wang, Y.C. Yang, J. Yang, F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. 20, 1 (2010)

    Article  Google Scholar 

  9. C.H. Ho, E.K. Lai, M.D. Lee, C.L. Pan, Y.D. Yao, K.Y. Hsieh, R. Liu, C.Y. Lu, A highly reliable self-aligned graded oxide WOx resistance memory: conduction mechanisms and reliability. In: 2007 Symposium on VLSI Technology, Digest of Technical Papers 228 (2007)

  10. W.C. Chien, Y.C. Chen, F.M. Lee, Y.Y. Lin, E.K. Lai, Y.D. Yao, J. Gong, S.F. Horng, C.W. Yeh, S.C. Tsai, C.H. Lee, Y.K. Huang, A novel Ni/WOX/W resistive random access memory with excellent retention and low switching current. Jpn. J. Appl. Phys. (2011). https://doi.org/10.1143/JJAP.50.04DD11

    Article  Google Scholar 

  11. W. Kim, S.I. Park, Z. Zhang, S. Wong, Current conduction mechanism of nitrogen-doped AlOx RRAM. IEEE Trans. Electron. Dev. 61, 2158 (2014). https://doi.org/10.1109/TED.2014.2319074

    Article  CAS  Google Scholar 

  12. Y.J. Fu, F.J. Xia, Y.L. Jia, J.Y. Li, X.H. Dai, G.S. Fu, B.Y. Zhu, B.T. Liu, Bipolar resistive switching behavior of La0.5Sr0.5CoO3−σ films for nonvolatile memory applications. App. Phys. Lett. 104, 223505 (2014). https://doi.org/10.1063/1.4881720

    Article  CAS  Google Scholar 

  13. M.U. Khan, G. Hassan, J. Bae, Resistive switching memory utilizing water and titanium dioxide thin film Schottky diode. J. Mater. Sci. 30, 18744 (2019). https://doi.org/10.1007/s10854-019-02227-7

    Article  CAS  Google Scholar 

  14. J.H. Shim, Q. Hu, M.R. Park, Y. Abbas, C.J. Kang, J. Kim, T.S. Yoon, Resistive switching characteristics of TiO2 thin films with different electrodes. J. Korean Phys. Soc. 67, 936 (2015). https://doi.org/10.3938/jkps.67.936

    Article  CAS  Google Scholar 

  15. F.C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1 (2014). https://doi.org/10.1155/2014/578168

    Article  CAS  Google Scholar 

  16. A. Anders, Tutorial: reactive high power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 121, 171101 (2017). https://doi.org/10.1063/1.4978350

    Article  CAS  Google Scholar 

  17. A. Anders, Physics of arcing, and implications to sputter deposition. Thin Solid Films 502, 22 (2006). https://doi.org/10.1016/j.tsf.2005.07.228

    Article  CAS  Google Scholar 

  18. N. Britun, T. Minea, S. Konstantinidis, R. Snyders, Plasma diagnostics for understanding the plasma–surface interaction in HiPIMS discharges: a review. J. Phys. D 47, 224001 (2014). https://doi.org/10.1088/0022-3727/47/22/224001

    Article  CAS  Google Scholar 

  19. K. Strijckmans, F. Moens, D. Depla, Perspective: is there a hysteresis during reactive high power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 121, 080901 (2017). https://doi.org/10.1063/1.4976717

    Article  CAS  Google Scholar 

  20. M. Yang, X. Ma, H. Wang, H. Xi, L. Lv, P. Zhang, Y. Xie, H. Gao, Y. Cao, S. Li, Y. Hao, Evolution of resistive switching and its ionic models in Pt/Nb-doped SrTiO3 junctions. Mater. Res. Express 3, 075903 (2016)

    Article  Google Scholar 

  21. F. Gul, Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram. Int. 44, 11417 (2018). https://doi.org/10.1016/j.ceramint.2018.03.198

    Article  CAS  Google Scholar 

  22. M.M. Gois, M.A. Macedo, Characteristics of analog memristor on thin-film Pt/Co0.2TiO3.2/ITO. J. Mater. Sci.: Mater. Electron. 31, 5692 (2020). https://doi.org/10.1007/s10854-020-03136-w

  23. S.K. Nandi, X.J. Liu, D.K. Venkatachalam, R.G. Elliman, Effect of electrode roughness on electroforming in HfO2 and defect-induced moderation of electric-field enhancement. Phys. Rev. Applied 4, 064010 (2015). https://doi.org/10.1103/PhysRevApplied.4.064010

    Article  CAS  Google Scholar 

  24. F. Magnus, B. Agnarsson, A.S. Ingason, K. Leosson, S. Olafsson, J.T. Gudmundsson, Growth of TiO2 thin films on Si(001) and SiO2 by reactive high power impulse magnetron sputtering. MRS Online Proc. Libr. 1352, 1026 (2011)

    Article  Google Scholar 

  25. T. Laetsch, R. Downs, Software for identification and refinement of cell parameters from powder diffraction data of minerals using the RUFF Project and american mineralogist crystal structure databases. Abstracts from the 19th General Meeting of the International Mineralogical Association 23 (2006)

  26. K.R. Zhu, M.S. Zhang, Q. Chen, Z. Yin, Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal. Phys. Lett. A 340, 220 (2005). https://doi.org/10.1016/j.physleta.2005.04.008

    Article  CAS  Google Scholar 

  27. A.F. Volkov, S.M. Kogan, Physical phenomena in semiconductors with negative differential conductivity. Soviet Phys. Uspekhi 11, 881 (1969)

    Article  Google Scholar 

  28. G. Dearnaley, A. Stoneham, D. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129 (1970). https://doi.org/10.1088/0034-4885/33/3/306

    Article  Google Scholar 

  29. M. Ismail, C.Y. Huang, D. Panda, C.J. Hung, T.L. Tsai, J.H. Jieng, C.A. Lin, U. Chand, A.M. Rana, E. Ahmed, I. Talib, M.Y. Nadeem, T.Y. Tseng, Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 9, 1 (2014). https://doi.org/10.1186/1556-276X-9-45

    Article  CAS  Google Scholar 

  30. R. Mahapatra, S. Maji, A.B. Horsfall, N.G. Wright, Temperature impact on switching characteristics of resistive memory devices with HfOx/TiOx/HfOx stack dielectric. Microelectron. Eng. 138, 118 (2015). https://doi.org/10.1016/j.mee.2015.03.008

    Article  CAS  Google Scholar 

  31. L. Yu, S. Kim, M. Ryu, S. Choi, Y. Choi, Structure effects on resistive switching of Al/TiOx devices for RRAM applications. IEEE Electr. Device. Lett. 29(4), 331 (2008). https://doi.org/10.1109/LED.2008.918253

    Article  CAS  Google Scholar 

  32. D.S. Jeong, C.S. Hwang, Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98, 113701 (2005). https://doi.org/10.1063/1.2135895

    Article  CAS  Google Scholar 

  33. W.K. Hsieh, K.T. Lam, S.J. Chang, Bipolar Ni/ZnO/HfO2/Ni RRAM with multilevel characteristic by different reset bias. Mater. Sci. Semicond. Proc. 35, 30 (2015). https://doi.org/10.1016/j.mssp.2015.02.073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey, under Grant No. 117F405.

Funding

Funding was provided by Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (Grant Number 117F405).

Author information

Authors and Affiliations

Authors

Contributions

MG involved in data analysis, measurements, and draft preparation. HE coordinated the device processing and final original manuscript.

Corresponding author

Correspondence to Hasan Efeoglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, M., Efeoglu, H. Formation of a Ti → TiO2-graded layer and its effect on the memristive properties of TiOx(/Ti/TiOx) structures. J Mater Sci: Mater Electron 33, 7423–7434 (2022). https://doi.org/10.1007/s10854-022-07864-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07864-z

Navigation