Skip to main content
Log in

Manganese ferrite—polyaniline nanocomposites for microwave absorbers in X band

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

From the past few decades, ferrite is well-known noble material due to its prominent properties like structural, electrical and magnetic properties. With these advantages, ferrites have been used as a substance to incorporate various kinds of functional materials. Among all the ferrites, MnFe2O4-based polyaniline nanocomposites have attracted a great deal of interest due to their enhanced performance due to low cost, strong environmental stability and intriguing electroactivity. In the present work, MnFe2O4 is prepared by sole-gel auto-combustion method and MnFe2O4@PANI nanocomposites were synthesised by mechanical mixing method with various wt% (from 10 to 50%). The as-prepared nanocomposites were characterised by the XRD, and TEM and VSM are used to study the properties like structural and magnetic behaviour of the ferrite-mixed PANI composite. In the 8 GHz–12 GHz range, the complex permittivity and permeability of composite samples were calculated. The values of permittivity were observed to increase as ferrite volume concentration increased, while permittivity decreased as PANI increased. As a result, polyaniline-based nanocomposites specifically demonstrate that they can be used as EMI shielding materials. These nanocomposites are used in microwave absorbers in X band applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.M. Grant Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater. 460, 229–233 (2018). https://doi.org/10.1016/j.jmmm.2018.04.017

    Article  CAS  Google Scholar 

  2. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge. J. Appl. Phys. 120, 123905 (2016). https://doi.org/10.1063/1.4963293

    Article  CAS  Google Scholar 

  3. K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. J. Alloys Compd. 720, 395–400 (2017). https://doi.org/10.1016/j.jallcom.2017.05.146

    Article  CAS  Google Scholar 

  4. J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3, 123–172 (2021). https://doi.org/10.1039/D0NA00760A

    Article  Google Scholar 

  5. Y. Cao, G.M. Treacy, P. Smith, A.J. Heeger, Optical-quality transparent conductive polyaniline films. Synth. Met. 55, 3526–3531 (1993). https://doi.org/10.1016/0379-6779(93)90470-H

    Article  Google Scholar 

  6. T.A. Ezquerra, F. Kremer, M. Mohammadi, J. Ruhe, G. Wegner, B. Wessling, AC conductivity measurements in polymeric insulator conductor systems. Synth. Met. 28, 83–88 (1989). https://doi.org/10.1016/0379-6779(89)90503-1

    Article  Google Scholar 

  7. T. Taka, EMI shielding measurements on poly(3-octyl thiophene) blends. Synth. Met. 41, 1177–1180 (1991). https://doi.org/10.1016/0379-6779(91)91582-U

    Article  CAS  Google Scholar 

  8. T. Mokela, J. Sten, A. Hujanen, H. Isotalo, High frequency polyaniline shields. Synth. Met. 101, 707 (1999). https://doi.org/10.1016/S0379-6779(98)01095-9

    Article  Google Scholar 

  9. S.H. Kim, S.H. Jang, S.W. Byun, J.Y. Lee, J.S. Joo, S.H. Jeong, Electrical properties and EMI shielding characteristics of polypyrrole–nylon 6 composite fabrics. J. Appl. Polym. Sci 87, 1969–1974 (2003). https://doi.org/10.1002/app.11566

    Article  CAS  Google Scholar 

  10. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber-polymer foam structures. Adv. Mater. 17, 1999–2003 (2005). https://doi.org/10.1002/adma.200500615

    Article  CAS  Google Scholar 

  11. Y. Liu, E. Xuehua Liu, B.W. Xinyu, Z. Jia, Q. Chi, Wu. Guanglei, Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 103, 157–164 (2022). https://doi.org/10.1016/j.jmst.2021.06.034

    Article  Google Scholar 

  12. M. Chang, Z. Jia, S. He, J. Zhou, S. Zhang, M. Tian, B. Wang, Wu. Guanglei, Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. B. Eng. 225, 109306 (2021). https://doi.org/10.1016/j.compositesb.2021.109306

    Article  CAS  Google Scholar 

  13. Oh. Kyung Wha, Dong Jun Kim, Seong Hun Kim, Adhesion improvement of electroless copper plated layer on PET film: Effect of pretreatment conditions. Polymer (Korea) 25, 302–310 (2001)

    Google Scholar 

  14. J. Joo, A.J. Epstein, Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 65, 2278 (1994). https://doi.org/10.1063/1.112717

    Article  CAS  Google Scholar 

  15. H.H. Kuhn, A.D. Child, W.C. Kimbrell, Toward real applications of conductive polymers. Synth. Met. 71, 2139–2142 (1995). https://doi.org/10.1016/0379-6779(94)03198-F

    Article  CAS  Google Scholar 

  16. F. Tabatabaie, M.H. Fathi, A. Saatchi, A. Ghasemi, Microwave absorption properties of Mn- and Ti-doped strontium hexaferrite. J. Alloys Compd. 470, 332–335 (2009). https://doi.org/10.1016/j.jallcom.2008.02.094

    Article  CAS  Google Scholar 

  17. V.J. Angadi, B. Rudraswamy, S. Matteppanavar, B. Angadi, S.E. Vinodini, K. Sadhana, K. Praveena, Effect of Zn2+ Substituted on Structural and Magnetic Properties of Manganese Ferrite Synthesized via Combustion Route. Adv. Sci. Lett. 22, 790–796 (2016). https://doi.org/10.1166/asl.2016.6952

    Article  Google Scholar 

  18. K. Praveena, K.B.R. Varma, Improved magneto-electric response in Na0.5Bi0.5TiO3–MnFe2O4 composites. J. Mater. Sci.: Mater Electron. 25, 111–116 (2014). https://doi.org/10.1007/s10854-013-1557-8

    Article  CAS  Google Scholar 

  19. K. Praveena K, K.B.R. Varma, Enhanced electric field tunable magnetic properties of lead-free Na0.5Bi0.5TiO3–MnFe2O4 multiferroic composites, J. Mater. Sci.: Mater. Electron. 25, 5403–5409 (2014). https://doi.org/10.1007/s10854-014-2320-5

    Article  CAS  Google Scholar 

  20. H. Ibrahim Sharifi, S.A. Shokrollahi, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012). https://doi.org/10.1016/j.jmmm.2011.10.017

    Article  CAS  Google Scholar 

  21. V.J. Angadi, B. Rudraswamy, K. Sadhana, K. Praveena, Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels. J. Magn. Magn. Mater. 409, 111–115 (2016). https://doi.org/10.1016/j.jmmm.2016.02.096

    Article  CAS  Google Scholar 

  22. K. Sadhana, R. Sandhya, K. Praveena, DC-Bias-Superposition Characteristics of Ni0.4Zn0.2Mn0.4Fe2O4 Nanopowders Synthesized by Auto-Combustion. J. Nanosci. Nanotech. 15, 4552–4557 (2015). https://doi.org/10.1166/jnn.2015.9809

    Article  CAS  Google Scholar 

  23. K. Praveena, H.W. Chen, H.L. Liu, K. Sadhana, S.R. Murthy, Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications. J. Magn. Magn. Mater. 420, 129–142 (2016). https://doi.org/10.1016/j.jmmm.2016.07.011

    Article  CAS  Google Scholar 

  24. V. Jagadeesha Angadi, B. Rudraswamy, K. Sadhana, K. Praveena, Effect of Sm3+-Gd3+ co-doping on dielectric properties of Mn-Zn ferrites synthesized via combustion route. Mater. Today: Proc. 3, 2178–2186 (2016). https://doi.org/10.1016/j.matpr.2016.04.124

    Article  Google Scholar 

  25. S. Yunus, A. Attout, P. Bertrand, Controlled aniline polymerization strategies for polyaniline micro- and nano self-assembling into practical electronic devices. Langmuir 25, 1851–1854 (2009). https://doi.org/10.1021/la803034q

    Article  CAS  Google Scholar 

  26. Q. Lu, X.H. Wang, Water dispersed conducting polyaniline nanofibers for high-capacity rechargeable lithium-oxygen battery. ACS Macro Lett. 2, 92–95 (2013). https://doi.org/10.1021/mz3005605

    Article  CAS  Google Scholar 

  27. S. Virji, J. Huang, R.B. Kaner, B.H. Weiller, P.N.G. Sensors, Examination of response mechanisms. Nano Lett. 4, 491–496 (2004). https://doi.org/10.1021/nl035122e

    Article  CAS  Google Scholar 

  28. H. Ding, X.-M. Liu, M. Wan, Fu. Shao-Yun, Electromagnetic functionalized cage-like polyaniline composite nanostructures. Phys. Chem. B 112, 9289–9294 (2008). https://doi.org/10.1021/jp8016997

    Article  CAS  Google Scholar 

  29. J.C. Aphesteguy, A. Damiani, D. DiGiovanni, S.E. Jacobo, Microwave absorption behavior of a polyaniline magnetic composite in the X-band. J. Phys. B: Condens. Matter 407, 3168–3171 (2012). https://doi.org/10.1016/j.physb.2011.12.055

    Article  CAS  Google Scholar 

  30. J.R. Capadona, O. Van Den Berg, L.A. Capadona, M. Schroeter, S.J. Rowan, D.J. Tyler, C. Weder, A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat. Nanotechnol. 2, 765–769 (2007). https://doi.org/10.1038/nnano.2007.379

    Article  CAS  Google Scholar 

  31. Y. Wang, X. Jing, Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 16, 344–351 (2005). https://doi.org/10.1002/pat.589

    Article  CAS  Google Scholar 

  32. S. Fauveaux, J.L. Miane, Broadband electromagnetic shields using polyaniline composites. Electromagnetics 23, 617–627 (2003). https://doi.org/10.1080/02726340390244734

    Article  Google Scholar 

  33. H.M. Xiao, X.M. Liu, S.Y. Fu, Synthesis, magnetic and microwave absorbing properties of core-shell structured MnFe2O4/TiO2 nanocomposites. Compo. Sci. Tech. 66, 2003–2008 (2006). https://doi.org/10.1016/j.compscitech.2006.01.001

    Article  CAS  Google Scholar 

  34. S.H. Hosseini, S.H. Mohseni, A. Asadnia, H. Kerdari, Synthesis and microwave absorbing properties of polyaniline/MnFe2O4 nanocomposite. J. Alloys Compd. 509, 4682–4687 (2011). https://doi.org/10.1016/j.jallcom.2010.11.198

    Article  CAS  Google Scholar 

  35. B. Birsoz, A. Baykal, H. Sozeri, M.S. Toprak, Synthesis and characterization of polypyrrole–BaFe12O19 nanocomposite. J. Alloys Compd. 493, 481–485 (2010). https://doi.org/10.1016/j.jallcom.2009.12.135

    Article  CAS  Google Scholar 

  36. T. Giannakopoulou, L. Kompotiatis, A. Kontogeorgakos, G. Kordas, Microwave behavior of ferrites prepared via sol–gel method. J. Magn. Magn. Mater. 246, 360–365 (2002). https://doi.org/10.1016/S0304-8853(02)00106-3

    Article  CAS  Google Scholar 

  37. S. Sugimoto, K. Haga, T. Kagotani, K. Inomata, Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method. J. Magn. Magn. Mater. 290–291, 1188–1191 (2005). https://doi.org/10.1016/j.jmmm.2004.11.381

    Article  CAS  Google Scholar 

  38. K.H. Wu, T.H. Ting, M.C. Lia, W.D. Ho, Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels. J. Magn. Magn. Mater. 298, 25–32 (2006). https://doi.org/10.1016/j.jmmm.2005.03.008

    Article  CAS  Google Scholar 

  39. K. Praveena, S. Srinath, The effect of Sb on the electrical and magnetic properties of Ni-Zn ferrites prepared by sol–gel autocombustion method. J. Electroceram. 31, 168–175 (2013). https://doi.org/10.1007/s10832-013-9840-x

    Article  CAS  Google Scholar 

  40. K. Praveena, M. Penchal Reddy, M. Bououdina, R. Sandhya, K. Sadhana, Effect of Ni–Zr codoping on dielectric and magnetic properties of SrFe12O19 via sol–gel route. J. Magn. Magn. Mater. 382, 172–178 (2015). https://doi.org/10.1016/j.jmmm.2015.01.050

    Article  CAS  Google Scholar 

  41. K. Sadhana, S.R. Murthy, K. Praveena, Effect of Sm3+ on dielectric and magnetic properties of Y3Fe5O12 nanoparticles. J. Mater. Sci.: Mater Electron. 25, 5130–5136 (2014). https://doi.org/10.1007/s10854-014-2282-7

    Article  CAS  Google Scholar 

  42. H. Chyi Ching, W. Tsung Yung, W. Jun, T. Jih Sheng, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders. Mater. Sci. Eng. B 111, 49–56 (2004). https://doi.org/10.1016/j.mseb.2004.03.023

    Article  CAS  Google Scholar 

  43. J. Livage, C. Sanchez, M. Henry, S. Doeuff, The chemistry of the sol-gel process. Solid State Ion. 32–33, 633–638 (1989). https://doi.org/10.1016/0167-2738(89)90338-X

    Article  Google Scholar 

  44. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974). https://doi.org/10.1109/PROC.1974.9382

    Article  Google Scholar 

  45. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  46. K. Manjunatha, V. Jagadeesha Angadi, R. Rajaramakrishna, U. Mahaboob Pasha, Role of 5 mol% Mg-Ni on the Structural and Magnetic Properties of Cobalt Chromates Crystallites Prepared by Solution Combustion Technique. J. Supercond. Nov. Magn. 33, 2861–2866 (2020). https://doi.org/10.1007/s10948-020-05549-4

    Article  CAS  Google Scholar 

  47. Z. Wang, X. Wang, N. Zhao, J. He, S. Wang, Wu. Guanglei, Y. Cheng, the desirable dielectric properties and high thermal conductivity of epoxy composites with the cobweb-structured SiCnw–SiO2–NH2 hybrids. J Mater Sci: Mater Electron. 32, 20973–20984 (2021). https://doi.org/10.1007/s10854-021-06543-9

    Article  CAS  Google Scholar 

  48. J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang, Xu. Binghui, Wu. Guanglei, Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 429, 132253 (2022). https://doi.org/10.1016/j.cej.2021.132253

    Article  CAS  Google Scholar 

  49. D.A. Dimitrov, G.M. Wysin, Magnetic properties of spherical fcc clusters with radial surface anisotropy. Phys. Rev. B 51, 11947 (1995). https://doi.org/10.1103/PhysRevB.51.11947

    Article  CAS  Google Scholar 

  50. V.P. Shilov, J.C. Bacri, F. Gazeau, F. Gendron, R. Perzynski, Y.L. Raikher, Ferromagnetic resonance in ferrite nanoparticles with uniaxial surface anisotropy. J. Appl. Phys. 85, 6642–6647 (1999). https://doi.org/10.1063/1.370173

    Article  CAS  Google Scholar 

  51. N.E. Kazantseva, J. Vilcˇa´kova, V. Krˇesa´lek, P. Sa´ha, I. Sapurina, J. Stejskald, Magnetic behaviour of composites containing polyaniline-coated manganese–zinc ferrite. J. Magn. Magn. Mater. 269, 30–37 (2004). https://doi.org/10.1016/S0304-8853(03)00557-2

    Article  CAS  Google Scholar 

  52. L. Li, J. Jiang, Xu. Feng, Novel polyaniline-LiNi0.5La0.02Fe1.98O4 nanocomposites prepared via an in situ polymerization. Eur. Polym. J. 42, 2221–2227 (2006). https://doi.org/10.1016/j.eurpolymj.2006.06.024

    Article  CAS  Google Scholar 

  53. J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, Guanglei, Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5

    Article  CAS  Google Scholar 

  54. X. Huang, X. Liu, Z. Jia, B. Wang, Wu. Xiaomeng, Wu. Guanglei, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. (2021). https://doi.org/10.1007/s42114-021-00304-2

    Article  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project Number (TURSP-2020/45) Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Praveena or A. El-Denglawey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, K., Jagadeesha Gowda, G.V., El-Denglawey, A. et al. Manganese ferrite—polyaniline nanocomposites for microwave absorbers in X band. J Mater Sci: Mater Electron 33, 5678–5685 (2022). https://doi.org/10.1007/s10854-022-07753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07753-5

Navigation