Skip to main content
Log in

Improved magneto-electric response in Na0.5Bi0.5TiO3–MnFe2O4 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magneto-electric composites comprising Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) were fabricated using their fine powders obtained via sol–gel method. X-ray diffraction and scanning electron microscopy results confirmed the single-phase formation of NBT and MFO and the composite nature when these were mixed and sintered at appropriate temperatures. The dielectric constant (εr) and dielectric loss (D) decreased with increase in frequency (40–110 MHz). Room temperature magnetization measurements established these composites to be soft magnetic. Further, the nature of these composites were established to be magneto-electric at 300 K. The highest ME response of 0.19 % was observed in 30NBT–70MFO composite. The ME coefficient (α) was 240 mV/cm Oe for the same composition. The present study demonstrated the effectiveness of NBT/MFO as a lead-free multiferroic composite and provides an alternative for environment-friendly ME device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  Google Scholar 

  3. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  Google Scholar 

  4. M. Bibes, A. Barthelemy, Nat. Mater. 7, 425 (2008)

    Article  Google Scholar 

  5. M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005)

    Article  Google Scholar 

  6. J.F. Scott, Nat. Mater. 6, 256 (2007)

    Article  Google Scholar 

  7. J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)

    Google Scholar 

  8. G.A. Smolenskii, I.E. Chupis, Usp. Fiz. Nauk 137, 415 (1982)

    Article  Google Scholar 

  9. J. Van den Boomgaard, D.R. Terrell, H.F. Born, J.I. Giller, J. Mater. Sci. 9, 1705 (1974)

    Article  Google Scholar 

  10. J. Van den Boomgaard, A.M.J.G. Van Run, J. Van Suchtelen, Ferroelectrics 10, 295 (1976)

    Article  Google Scholar 

  11. J. Van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978)

    Article  Google Scholar 

  12. K. Srinivas, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, C. Prakash, S.N. Chatterjee, Proc. SPIE 3903, 266 (1999)

    Article  Google Scholar 

  13. K. Srinivas, G. Prasad, T. Bhimasankaram, S.V. Suryanarayana, Mod. Phys. Lett. B 14, 663 (2000)

    Article  Google Scholar 

  14. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bhokan, V.M. Latetin, Phys. Rev. B 64, 214408 (2001)

    Article  Google Scholar 

  15. G. Srinivasan, E.T. Rasmussen, B.J. Levin, R. Hayes, Phys. Rev. B 65, 134402 (2002)

    Article  Google Scholar 

  16. J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Jpn. J. Appl. Phys. 40, 4948 (2001)

    Article  Google Scholar 

  17. G.A. Smolenskii, V. Isupov, A. Agranovskaya, N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  18. A. Herabut, A. Safarl, J. Am. Ceram. Soc. 80, 2954 (1997)

    Article  Google Scholar 

  19. T. Takenaka, Ferroelectrics 230, 87 (1999)

    Article  Google Scholar 

  20. J. Suchanicz, M.G. Gavshin, A.Y. Kudzin, C.Z. Kus, J. Mater. Sci. 36, 1981 (2001)

    Article  Google Scholar 

  21. I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva, Ferroelectrics 25, 395 (1980)

    Article  Google Scholar 

  22. C.S. Tu, I.G. Siny, V.H. Schmidt, Phys. Rev. B 49, 11550 (1994)

    Article  Google Scholar 

  23. I.G. Siny, C.S. Tu, V.H. Schmidt, Phys. Rev. B 51, 5659 (1995)

    Article  Google Scholar 

  24. O. Yuqiu, Y. Haibin, Y. Nan, F. Yuzun, Z. Hongyang, Z. Guangtian, Mater. Lett. 60, 3548 (2006)

    Article  Google Scholar 

  25. Q.M. Wei, J. Li, Y. Chen, Y. Han, Mater. Charact. 47, 247 (2001)

    Article  Google Scholar 

  26. F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, X.B. Chen, X.M. Ren, Y. Zhao, Appl. Phys. Lett. 89, 092910 (2006)

    Article  Google Scholar 

  27. J. Van den Boomgaard, R.A.J. Born, J. Mater. Sci. 13, 1538 (1978)

    Article  Google Scholar 

  28. S. Upadhyay, D. Kumar, O.M. Parkash, Bull. Mater. Sci. 19, 513 (1996)

    Article  Google Scholar 

  29. C.G. Koops, Phys. Rev. B 83, 121 (1951)

    Article  Google Scholar 

  30. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1954)

    Google Scholar 

  31. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  32. B.P. Rao, K.H. Rao, K. Trinadha, O.F. Caltunb, Adv. Mater. 6, 951 (2004)

    Google Scholar 

  33. V.L. Mathe, K.K. Patankar, M.B. Kothale, S.B. Kulkarni, P.B. Joshi, S.A. Patil, Pramana J. Phys. 58, 1105 (2002)

    Article  Google Scholar 

  34. N. Rezlescu, E. Rezlescu, Phys. State Solid A 23, 575 (1974)

    Article  Google Scholar 

  35. S. Hosseini, S.H. Mohseni, A. Asadnia, H. Kerdari, J. Alloy Compd. 509, 4682 (2011)

    Article  Google Scholar 

  36. S. Narendra Babu, Y. Jen-Hwa Hsu, S. Chen, J.G. Lin, J. Appl. Phys. 109, 0904 (2011)

    Google Scholar 

  37. S. Narendra Babu, K. Srinivas, S.V. Suryanarayana, T. Bhimasankaram, J. Phys. D Appl. Phys. 41, 165407 (2008)

    Article  Google Scholar 

  38. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  Google Scholar 

  39. Y.-K. Jun, W.-T. Moon, C.-M. Chang, H.-S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.-H. Hong, Solid State Commun. 135, 133 (2005)

    Article  Google Scholar 

  40. V.R. Palkar, C. Kundaliya Darshan, S.K. Malik, S. Bhattacharya, Phys. Rev. B 69, 212102 (2004)

    Article  Google Scholar 

  41. S.N. Babu, L. Malkinski, J. Appl. Phys. 111, 919 (2012)

    Google Scholar 

  42. Y.H. Tang, X.M. Chen, Y.J. Li, X.H. Zheng, Mater. Sci. Eng. B 116, 150 (2005)

    Article  Google Scholar 

  43. W.D. Kingery, Introduction to Ceramics (Wiley, London, 1988), p. 720

    Google Scholar 

  44. C.W. Nan, M. Li, J.H. Haung, Phys. Rev. B 63, 144415 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

K. Praveena thanks University Grants Commission (UGC), New Delhi for Dr D.S. Kothari Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Praveena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Praveena, K., Varma, K.B.R. Improved magneto-electric response in Na0.5Bi0.5TiO3–MnFe2O4 composites. J Mater Sci: Mater Electron 25, 111–116 (2014). https://doi.org/10.1007/s10854-013-1557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1557-8

Keywords

Navigation