Skip to main content

Advertisement

Log in

Preparation and dielectric properties of multilayer Ag@FeNi-MOF/PVDF composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ag@FeNi-MOF/PVDF multilayer polymer nanocomposites with high dielectric properties were designed and prepared in this paper, and their theoretical simulation was carried out through COMSOL Multiphysics 5.4, which verified the advantages of multilayer structure design. Ag@FeNi-MOF two-dimensional hybrid nanosheets were prepared by hydrothermal reaction in the experiment, which were doped into PVDF matrix as fillers to obtain monolayer films, and then combined with pure PVDF film by hot pressing to achieve multilayer structure. The results showed that the multilayer structure could effectively improve the energy storage density and breakdown field strength. When the number of film layers were 1, 3, 5 and 7, the energy storage density were 8.01, 8.482, 8.822 and 9.467 J/cm3, and the breakdown field strength were 2239, 2500, 2700 and 2850 kV/cm. Compared with layer 1, the energy storage density of layer 7 increased by 18.1%, and the breakdown field strength increased by 27.3%. This study proved that the multilayer structure design had positive significance in improving the dielectric properties of polymer nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, Y. Huang, Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018)

    Article  CAS  Google Scholar 

  2. D. Sheberla, J.C. Bachman, J.S. Elias, C.-J. Sun, Y. Shao-Horn, M. Dinca, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017)

    Article  CAS  Google Scholar 

  3. W. He, C. Wang, F. Zhuge, X. Deng, X. Xu, T. Zhai, Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy 35, 242–250 (2017)

    Article  CAS  Google Scholar 

  4. H. Liu, J. Gao, W. Huang, K. Dai, G. Zheng, C. Liu, C. Shen, X. Yan, J. Guo, Z. Guo, Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8, 12977–12989 (2016)

    Article  CAS  Google Scholar 

  5. M. Liao, P. Wan, J. Wen, M. Gong, X. Wu, Y. Wang, R. Shi, L. Zhang, Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv. Funct. Mater. 27, 1703852 (2017)

    Article  Google Scholar 

  6. H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

  7. Y. Tian, X. Zhang, H.-Z. Geng, H.-J. Yang, C. Li, S.-X. Da, X. Lu, J. Wang, S.-L. Jia, Carbon nanotube/polyurethane films with high transparency, low sheet resistance and strong adhesion for antistatic application. RSC Adv. 7, 53018–53024 (2017)

    Article  CAS  Google Scholar 

  8. V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116, 4260–4317 (2016)

    Article  Google Scholar 

  9. J. Gu, Z. Lv, Y. Wu, Y. Guo, L. Tian, H. Qiu, W. Li, Q. Zhang, Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method. Compos. Part A 94, 209–216 (2017)

    Article  CAS  Google Scholar 

  10. M. Feng, Q. Chi, Y. Feng, Y. Zhang, T. Zhang, C. Zhang, Q. Chen, Q. Lei, High energy storage density and efficiency in aligned nanofiber filled nanocomposites with multilayer structure. Compos. Part B 198, 108206 (2020)

    Article  CAS  Google Scholar 

  11. Q. Chen, Y. Shen, S. Zhang, Q.M. Zhang, Polymer-based dielectrics with high energy storage density. Annu. Rev. Mater. Res. 452015, 433–458 (2015)

    Article  Google Scholar 

  12. S. Luo, Y. Shen, S. Yu, Y. Wan, W.-H. Liao, R. Sun, C.-P. Wong, Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites. Energy Environ. Sci. 10, 137–144 (2017)

    Article  CAS  Google Scholar 

  13. H.L. Peng, X.J. Ma, C.B. Liu, C.W. Lei, X. Li, Z.Q. Xiong, Facile fabrication of indium tin oxide/nanoporous carbon composites with excellent low-frequency microwave absorption. J. Alloys Compd. 889, 161636 (2021)

    Article  Google Scholar 

  14. S. Ghosh, T. Maiyalagan, R.N. Basu, Nanostructured conducting polymers for energy applications: towards a sustainable platform. Nanoscale 8, 6921–6947 (2016)

    Article  CAS  Google Scholar 

  15. Z. Pan, J. Zhai, B. Shen, Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A 5, 15217–15226 (2017)

    Article  CAS  Google Scholar 

  16. X. Huang, P. Jiang, Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27, 546–554 (2015)

    Article  CAS  Google Scholar 

  17. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, High-energy-density polymer nanocomposites composed of newly structured one-dimensional BaTiO3@Al2O3 nanofibers. ACS Appl. Mater. Interfaces 9, 4024–4033 (2017)

    Article  CAS  Google Scholar 

  18. J. Mangeri, Y. Espinal, A. Jokisaari, S.P. Alpay, S. Nakhmanson, O. Heinonen, Topological phase transformations and intrinsic size effects in ferroelectric nanoparticles. Nanoscale 9, 1616–1624 (2017)

    Article  CAS  Google Scholar 

  19. Y. Wang, J. Cui, L. Wang, Q. Yuan, Y. Niu, J. Chen, Q. Wang, H. Wang, Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites. J. Mater. Chem. A 5, 4710–4718 (2017)

    Article  CAS  Google Scholar 

  20. J. Chen, Y. Wang, Q. Yuan, X. Xu, Y. Niu, Q. Wang, H. Wang, Multilayered ferroelectric polymer films incorporating low-dielectric-constant components for concurrent enhancement of energy density and charge-discharge efficiency. Nano Energy 54, 288–296 (2018)

    Article  CAS  Google Scholar 

  21. F. Liu, Q. Li, J. Cui, Z. Li, G. Yang, Y. Liu, L. Dong, C. Xiong, H. Wang, Q. Wang, High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27, 1606292 (2017)

    Article  Google Scholar 

  22. X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017)

    Article  CAS  Google Scholar 

  23. H.B. Wu, X.W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3, eaap9252 (2017)

    Article  Google Scholar 

  24. C. Liu, T. Zhang, F. Daneshvar, S. Feng, Z. Zhu, M. Kotaki, M. Mullins, H.-J. Sue, High dielectric constant epoxy nanocomposites based on metal organic frameworks decorated multi-walled carbon nanotubes. Polymer 207, 122913 (2020)

    Article  CAS  Google Scholar 

  25. H. Wang, Q.-L. Zhu, R. Zou, Q. Xu, Metal-organic frameworks for energy applications. Chem 2, 52–80 (2017)

    Article  CAS  Google Scholar 

  26. M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Two-dimensional metal-organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47, 6267–6295 (2018)

    Article  CAS  Google Scholar 

  27. Q. Li, G. Zhang, F. Liu, K. Han, M.R. Gadinski, C. Xiong, Q. Wang, Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy Environ. Sci. 8, 922–931 (2015)

    Article  CAS  Google Scholar 

  28. Y. Xie, Y. Yu, Y. Feng, W. Jiang, Z. Zhang, Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3. ACS Appl. Mater. Interfaces 9, 2995–3005 (2017)

    Article  CAS  Google Scholar 

  29. Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu, H. Wang, J. Liu, Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A 4, 13259–13264 (2016)

    Article  CAS  Google Scholar 

  30. L. Guan, L. Weng, N. Chen, H. Kannan, Q. Li, X. Zhang, Z. Wu, Y. Ma, A. Sahu, Bimetallic organic framework NiFeMOF driven by tiny Ag particles for PVDF dielectric composites. Compos. Part A 147, 106432 (2021)

    Article  CAS  Google Scholar 

  31. L. Guan, L. Weng, Q. Li, X. Zhang, Z. Wu, Y. Ma, Design and preparation of ultra-thin 2D Ag-NiMOF ferroelectric nanoplatelets for PVDF based dielectric composites. Mater. Des. 197, 109241 (2021)

    Article  CAS  Google Scholar 

  32. F.Z. Sun, G. Wang, Y.Q. Ding, C. Wang, B.B. Yuan, Y.Q. Lin, NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 8, 11 (2018)

    Google Scholar 

  33. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  CAS  Google Scholar 

  34. X. Cui, P. Ding, N. Zhuang, L. Shi, N. Song, S. Tang, Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect. ACS Appl. Mater. Interfaces 7, 19068–19075 (2015)

    Article  CAS  Google Scholar 

  35. V. Manjula, T.V. Prasad, K. Balakrishna, K.C.J. Raju, T. Vishwam, Influence of hydrogen bond networks in Glycerol/N-Methyl-2-Pyrrolidone mixtures studied by dielectric relaxation spectroscopy. J. Mol. Struct. 1227, 129703 (2021)

    Article  CAS  Google Scholar 

  36. Q. Yin, Y. Wen, H. Jia, L. Hong, Q. Ji, Z. Xu, Enhanced mechanical, dielectric, electrical and thermal conductive properties of HXNBR/HNBR blends filled with ionic liquid-modified multiwalled carbon nanotubes. J. Mater. Sci. 52, 10814–10828 (2017)

    Article  CAS  Google Scholar 

  37. Z. Yan, Y. Yang, X. Cai, Preparation of a ferroelectric composite film metal-organic framework/PVDF. J. Polym. Res. 27, 12 (2020)

    Article  CAS  Google Scholar 

  38. Y. Shen, S. Luo, S. Yu, R. Sun, C.-P. Wong, Surface-modified barium titanate by MEEAA for high-energy storage application of polymer composites. High Volt. 1, 175–180 (2016)

    Article  Google Scholar 

  39. X. Zhang, Y. Shen, Q. Zhang, L. Gu, Y. Hu, J. Du, Y. Lin, C.-W. Nan, Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27, 819–824 (2015)

    Article  CAS  Google Scholar 

  40. P. Zhu, L. Weng, X. Zhang, X. Wang, L. Guan, J. Shi, L. Liu, Enhanced dielectric performance of TPU composites filled with Graphene@poly(dopamine)-Ag core-shell nanoplatelets as fillers. Polym. Test. 90, 106671 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First of all, we would like to thank Professor Weng Ling for his kind guidance. Professor Weng is the guiding light and guides on my scientific research road, and the strong backing for my scientific research achievements. Weng teacher wisdom agile, self-discipline and enterprising, is a good example of my study. Thank Mr. Weng for his hard work and painstaking effort in correcting all my papers, regardless of the cost. Weng teacher's teachings such as spring weathering Yu peach and plum, moisten things silent sprinkle Chunhui, so that I benefit for life. We would like to thank Mr. Zhu Xingsong and Mr. Wang Cheng, the experimental teachers of polymer major, for their help in the test. Thanks to Mr. Chen Hongtao, Mr. Ma Chengguo and Mr. Liu Junwang of the Analysis and Testing Center of the School of Materials for their help in analysis and testing.

Funding

This work was funded by the National Natural Science Foundation of China (No. 51677045), the outstanding young talents project of Harbin University of Science and Technology (2019-KYYWF-0206), and the Harbin Science and Technology Innovation Talents Project (No. 2016RAQXJ059).

Author information

Authors and Affiliations

Authors

Contributions

The first three authors of this paper have made significant contributions to this paper, and the same contributions. XS: responsible for experimental design, writing-review & editing, CH, XT: analysis of experimental data, writing-review & editing, MZ, DM: investigation, visualization, LW, LG: resources, supervision, JL: data curation.

Corresponding authors

Correspondence to Ling Weng, Junwang Liu or Lizhu Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competitive economic or personal relationships, which may have an impact on the work of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Han, C., Tao, X. et al. Preparation and dielectric properties of multilayer Ag@FeNi-MOF/PVDF composites. J Mater Sci: Mater Electron 33, 5311–5324 (2022). https://doi.org/10.1007/s10854-022-07722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07722-y

Navigation