Skip to main content
Log in

Physicochemical investigations of structurally enriched Sm3+ substituted SnO2 nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study portrays structural, magnetic, electrical, optical and electronic characteristics of polycrystalline pristine and aliovalent Sm3+ modified Tin oxide (SnO2) nanocrystals [Sn(1−x)SmxO2 nanocrystals, where x = 0, x = 0.05, and x = 0.10] were synthesized using conventional sol–gel route. X-ray diffractogram showed rutile-type tetragonal crystallinity [space group P42/mnm] for all the samples. Microstructural investigations depicted well-interlinked grains and it was observed that average grain size increases with Sm3+ substitution in the crystal framework of SnO2. HRTEM images also confirmed the tetragonal rutile symmetry for all the compositions. FTIR spectra validated the phase pure synthesis and formation of Sm3+ substituted SnO2 nanocrystals as bend at 470 cm−1 attributed to the Sn/Sm–O vibrations. Magnetic measurements depicted that Sm3+ modified compositions showed room temperature magnetism with low coercivity and retentivity, while pristine SnO2 nanocrystals illustrated diamagnetism at higher magnetic field and defect-assisted ferromagnetism at low fields. The maximum value of dielectric constant (ε′) was observed for pure SnO2, and dielectric constant (ε′) decreases with increasing Sm3+ concentration. I-V curves showed non-linear behavior for all the samples and the maximum resistance was found for pure SnO2 nanocrystals. The incorporation of aliovalent rare-earth Sm3+ ion in SnO2 crystal matrix induces ferromagnetism in the system, which makes it dilute magnetic semiconductor for magneto-or spin electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Hamrouni, M. Noomen, P. Francesco, D.P. Agatino, H. Ammar, P. Leonardo, Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J. Mol Catal. A: Chem. 390, 133–141 (2014)

    Article  CAS  Google Scholar 

  2. G. Elango, M. Selvaraj, Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobio. 155, 34–38 (2016)

    Article  CAS  Google Scholar 

  3. D.L. Kamble, S.H. Namdev, L.P. Vithoba, S.P. Pramod, D.K. Laxman, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal. Appl. Pyro. 127, 38–46 (2017)

    Article  CAS  Google Scholar 

  4. D. Singh, V.S. Kundu, A.S. Maan, Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique. J. Mol. Struct. 1115, 250–257 (2016)

    Article  CAS  Google Scholar 

  5. S. Begum, T.B. Devi, M. Ahmaruzzaman, Surfactant mediated facile fabrication of SnO2 quantum dots and their degradation behavior of humic acid. Mater. Lett. 185, 123–126 (2016)

    Article  CAS  Google Scholar 

  6. G. Madhu, V.C. Bose, A.S. Aiswaryaraj, K. Maniammal, V. Biju, Defect dependent antioxidant activity of nanostructured nickel oxide synthesized through a novel chemical method. Coll. Surf. A: Phys. Eng. Asp. 429, 44–50 (2013)

    Article  CAS  Google Scholar 

  7. Y. Masuda, O. Tatsuki, K. Kazumi, Environmentally friendly tin oxide coating through aqueous solution process. Adv. Mater. Sci. Env. Ene. Tech. Cera. Transac. 236, 13–23 (2012)

    CAS  Google Scholar 

  8. N.L. Carreño, V.F. Humberto, P.M. Adeilton, V. Antoninho, M.P. Fenelon, F.P. Luiz, R.L. Edson, L. Elson, Selective synthesis of vinyl ketone over SnO2 nanoparticle catalysts doped with rare earths. J. Mol. Catal. A: Chem. 207, 91–96 (2004)

    Article  Google Scholar 

  9. Y. Xiao, H. Gaoyi, W. Jihuai, J.Y. Lin, Efficient bifacial perovskite solar cell based on a highly transparent poly (3, 4-ethylenedioxythiophene) as the p-type hole-transporting material. J. Power Sour. 306, 171–177 (2016)

    Article  CAS  Google Scholar 

  10. J.H. Ren, Y.T. Huang, K.W. Li, J. Shen, W.Y. Zeng, C.M. Sheng, J.J. Shao, Y.B. Han, Q. Zhang, Preparation of rare-earth thulium doped tin-oxide thin films and their applications in thin film transistors. Appl. Surf. Sci. 493, 63–69 (2019)

    Article  CAS  Google Scholar 

  11. J.H. Ren, K.W. Li, J. Shen, C.M. Sheng, Y.T. Huang, Q. Zhang, Effects of rare-earth erbium doping on the electrical performance of tin-oxide thin film transistors. J. Alloys Comp. 791, 11–18 (2019)

    Article  CAS  Google Scholar 

  12. J. Yue, X. Yaoming, L. Yanping, H. Gaoyi, Y. Zhang, H. Wenjing, Enhanced photovoltaic performances of the dye-sensitized solar cell by utilizing rare-earth modified tin oxide compact layer. Org. Elect. 43, 121–129 (2017)

    Article  CAS  Google Scholar 

  13. K.D.A. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ Doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2018)

    Article  Google Scholar 

  14. T. P. Wai, Y. Yin, X. Zhang, Z. Li, Preparation and characterization of rare earth-doped Ti/SnO2-Sb-Mn electrodes for the electrocatalytic performance. J. Nano. (2020).

  15. J. Fernández, G.R. Sara, B. Rolindes, C. Concepción, Rare-earth-doped wide-bandgap tin-oxide nanocrystals: pumping mechanisms and spectroscopy. Opt. Comp. Mater. XV 10528, 1052805 (2018)

    Google Scholar 

  16. M.K. Sohal, K. Manreet, M. Aman, G. Sahil, S.V. Nahirniak, T.A. Dontsova, S.C. Ravi, Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds. J. Mater. Sci. Mater. Electr. 31, 8446–8455 (2020)

    Article  CAS  Google Scholar 

  17. M. Ferrari, J. I. Mackenzie, T. Stefano, Fiber lasers and glass photonics: materials through applications II, In Soc. of Ph.-Opt. Instr. Engi. (SPIE) Conference Series, 11357 (2020)

  18. G. Singh, T. Rengasamy, R.C. Singh, Effect of crystallite size, Raman surface modes and surface basicity on the gas sensing behavior of terbium-doped SnO2 nanoparticles. Cer. Inter. 42, 4323–4332 (2016)

    Article  CAS  Google Scholar 

  19. L.P. Singh, N.P. Singh, S.K. Srivastava, Terbium doped SnO2 nanoparticles as white emitters and SnO2: 5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells. Dal. Transac. 44, 6457–6465 (2015)

    Article  CAS  Google Scholar 

  20. C.H. Kwak, T.H. Kim, S.Y. Jeong, J.W. Yoon, J.S. Kim, J.H. Lee, Humidity-independent oxide semiconductor chemiresistors using terbium-doped SnO2 yolk–shell spheres for real-time breath analysis. ACS Appl. Mater. Int. 10, 18886–18894 (2018)

    Article  CAS  Google Scholar 

  21. N. T. Tayade, S. Dhawankar, P. R. Arjuwadkar, Perspective of distortion and vulnerability in structure by using the cds-zns composite approach in rietveld refinement (2017)

  22. O. Hyung-Suk, H.N. Nong, T. Reier, M. Gliech, P. Strasser, Oxide-supported irnanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 6, 3321–3328 (2015)

    Article  Google Scholar 

  23. D. Sharma, S. Tripathi, R.S. Panwar, G. Dhillon, A.K. Bhatia, D. Vashisht, S.K. Mehta, N. Kumar, Crystal chemistry and physicochemical investigation of aliovalent substituted SnO2 nanoparticles. Vacuum 184, 109925 (2021)

    Article  CAS  Google Scholar 

  24. S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014)

    Article  CAS  Google Scholar 

  25. B.A. Hamad, First-principle calculations of structural and electronic properties of rutile-phase dioxides (MO2), M = Ti, V, Ru, Ir and Sn. Euro. Phys. J. B 70, 163–169 (2009)

    Article  CAS  Google Scholar 

  26. K.S. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopar. Res. 22, 1–10 (2020)

    Article  Google Scholar 

  27. S. K. Abdel-Aal, A. I. Beskrovnyi, A. M. Ionov, R. N. Mozhchil, A. S. Abdel-Rahman, structure investigation by neutron diffraction and x‐ray diffraction of graphene nanocomposite CuO–rGO prepared by low‐cost method. Phys. State Solidi (a). 2100138 (2021)

  28. S. K. Abdel-Aal, M. F. Kandeel, A. F. El-Sherif, A. S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic–inorganic hybrid perovskites [(NH3)2(CH2)3] CuCl4 and [(NH3)2 (CH2)4] CuCl2Br2. Phys. State Solid (a). 2100036 (2021)

  29. N. Hussain, S. Zulfiqar, T. Khan, R. Khan, S.A. Khattak, S. Ali, G. Khan, Investigation of structural, optical, dielectric and magnetic properties of SnO2 nanorods and nanospheres. Mater. Chem. Phys. 241, 122382 (2020)

    Article  CAS  Google Scholar 

  30. M.A. Gondal, Q.A. Drmosh, T.A. Saleh, Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Appl. Sur. Sci. 256, 7067–7070 (2010)

    Article  CAS  Google Scholar 

  31. L. Tan, L. Wang, Y. Wang, Hydrothermal synthesis of nanostructures with different morphologies and their optical properties. J. Nano. 2011 (2011)

  32. N.M. Shaalan, D. Hamad, A.Y. Abdel-Latief, M.A. Abdel-Rahim, Preparation of quantum size of tin oxide: structural and physical characterization. Prog. Nat. Sci: Mater. Int. 26, 145–151 (2016)

    Article  CAS  Google Scholar 

  33. S.E. Thamarai, S.M. Sundar, Effect of Mn doping on structural, optical and magnetic properties of SnO2 nanoparticles by solvothermal method. J. Mater. Sci. 28, 5021–15032 (2017)

    Google Scholar 

  34. S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Synthesis and characterization of tin oxide nanoparticles via the co-precipitation method. Mater. Sci.-Pol. 32, 98–101 (2014)

    Article  CAS  Google Scholar 

  35. V.B. Kamble, A.M. Umarji, Achieving selectivity from the synergistic effect of Cr and Pt activated SnO2 thin film gas sensors. Sens. Act. B: Chem. 236, 208–217 (2016)

    Article  CAS  Google Scholar 

  36. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic–inorganic hybrid perovskite of [NH3CH2CH(NH3)CH2] BiCl5. Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mat. 75, 880–886 (2019)

    Article  CAS  Google Scholar 

  37. D. Sharma, N. Kumar, T. Mehrotra, N. Pervaiz, L. Agrawal, S. Tripathi, A. Jha, T. Poullikkas, R. Kumar, L. Ledwani, In vitro and in silico molecular docking studies of Rheum emodi-derived diamagnetic SnO2 nanoparticles and their cytotoxic effects against breast cancer. New J. Chem. 45, 1695–1711 (2021)

    Article  CAS  Google Scholar 

  38. C. Wang, Q. Wu, H.L. Ge, T. Shang, J.Z. Jiang, Magnetic stability of SnO2 nanosheets. NANO 23, 075704 (2012)

    Google Scholar 

  39. G. Feng, S.F. Wang, K.L. Meng, G.J. Zhou, X. Dong, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol− gel method. The Jour. of Phy. Chem. B 108, 8119–8123 (2004)

    Article  Google Scholar 

  40. X.L. Wang, Z.X. Dai, Z. Zeng, Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co). J. Phys. Cond. Mat. 20, 045214 (2008)

    Article  Google Scholar 

  41. V. Agrahari, M.C. Mathpal, M. Kumar, A. Agarwal, Investigations of optoelectronic properties in DMS SnO2 nanoparticles. J. Alloys. Comp. 622, 48–53 (2015)

    Article  CAS  Google Scholar 

  42. A. Dieguez, A. Romano-Rodrıguez, A. Vila, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550–1557 (2001)

    Article  CAS  Google Scholar 

  43. D. Varshney, K. Verma, Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. J. Mol. Str. 1034, 216–222 (2013)

    Article  CAS  Google Scholar 

  44. A. Ahmed, M.N. Siddique, T. Ali, P. Tripathi, Defect assisted improved room temperature ferromagnetism in Ce doped SnO2 nanoparticles. Appl. Surf. Sci 483, 463–471 (2019)

    Article  CAS  Google Scholar 

  45. P.P. Sahay, R.K. Mishra, S.N. Pandey, S. Jha, M. Shamsuddin, Structural, dielectric and photoluminescence properties of co-precipitated Zn-doped SnO2 nanoparticles. Curr. Appl. Phys. 13, 479–486 (2013)

    Article  Google Scholar 

  46. N. Hussain, S. Zulfiqar, T. Khan, R. Khan, S.A. Khattak, S. Ali, G. Khan, Investigation of structural, optical, dielectric and magnetic properties of SnO2 nanorods and nanospheres. Mat. Chem. Phys. 241, 122382 (2020)

    Article  CAS  Google Scholar 

  47. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, Hoboken, 1987)

    Google Scholar 

  48. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  49. S.M. Zhou, Y.S. Feng, L.D. Zhang, A physical evaporation synthetic route to large-scale GaN nanowires and their dielectric properties. Chem. Phys. Lett. 69, 610 (2003)

    Article  Google Scholar 

  50. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)

    Article  CAS  Google Scholar 

  51. K. Dutta, S.K. De, Optical and diode like current–voltage characteristics of SnO2–polypyrrole nanocomposites. Jour. of Phy. D: App. Phy. 40, 734 (2007)

    Article  CAS  Google Scholar 

  52. P.M.R.M. Bharathi, T. Amutha, M. Rameshbabu, K. Prabha, Synthesis and investigation of Ce doped tinoxide (SnO2) nanoparticles. IRJET 4, 334 (2017)

    Google Scholar 

  53. M. Veerabhadrayya, R.A. Kumari, G. Nagaraju, Y.T. Ravikiran, B. Chethan, Structural, optical and electrical properties of Ce doped SnO2 nanoparticles prepared by surfactant assisted gel combustion method. J. Nano. Elec. Phys. 12, 04017 (2020)

    Article  CAS  Google Scholar 

  54. P.G. Li, X. Guo, X.F. Wang, W.H. Tang, Synthesis, photoluminescence and dielectric properties of O-deficient SnO2 nanowires. J. Alloys. Comp. 479, 74 (2009)

    Article  CAS  Google Scholar 

  55. F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B. 108, 8119 (2004)

    Article  CAS  Google Scholar 

  56. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. App. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  57. M.B. Reddy, S. Sailaja, P. Giridhar, C.N. Raju, B.S. Reddy, Spectroscopic investigations of Sm3+ Ions Doped B2O3-Bi2O3-ZnO-Li2O glasses. Ferroelectr. Lett. Sect. 38, 40 (2011)

    Article  CAS  Google Scholar 

  58. L.P. Singh, M. Niraj Luwang, S.K. Srivastava, Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles. New J. of Chem. 38, 115–121 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chitkara University, Punjab for support and institutional facilities. A special thanks to Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh, India, for characterization.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis and conceptualization: GD. Methodology: MC. Data analysis and investigation: NK. Writing (original draft): AK

Corresponding author

Correspondence to Gulshan Dhillon.

Ethics declarations

Conflict of interest

The authors hereby declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. All procedures performed in studies were in accordance with the ethical standards of the institutional or national research committee or comparable ethical standards.

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, N., Chitkara, M. et al. Physicochemical investigations of structurally enriched Sm3+ substituted SnO2 nanocrystals. J Mater Sci: Mater Electron 33, 5283–5296 (2022). https://doi.org/10.1007/s10854-022-07716-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07716-w

Navigation