Skip to main content
Log in

Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The gas sensing characteristics of metal oxide-based sensors are found to be influenced by the oxygen vacancies (OVs) that act as selective sites for gas adsorption. To ascertain the effect of OVs on gas sensing properties of tin oxide (SnO2), rare earth (gadolinium)-doped SnO2 thin films have been prepared via electron beam evaporation technique and characterized for structural, optical, and gas sensing properties. Spectroscopic studies revealed the doping dependence of in-plane and sub-bridging OVs that influence the gas interaction properties of Gd-doped SnO2 films. The dominance of sub-bridging OVs leads to enhanced sensing characteristics of 3% Gd-doped SnO2 film towards isopropanol. The gas sensing characteristics of metal oxide-based sensors are found to be influenced by the OVs that act as selective sites for gas adsorption. Among the tested volatile organic compounds (VOCs), the dominance of sub-bridging OVs leads to enhanced sensing characteristics of 3% Gd-doped SnO2 film towards isopropanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.P. Cheng, J. Wang, Q.Q. Li, H.G. Liu, Y. Li, J. Ind. Eng. Chem. 44, 1 (2016). https://doi.org/10.1016/j.jiec.2016.08.008

    Article  CAS  Google Scholar 

  2. V.V. Deo, D.M. Patil, L.A. Patil, M.P. Kaushik, Sens. Actuators B 196, 489 (2014). https://doi.org/10.1016/j.snb.2014.02.011

    Article  CAS  Google Scholar 

  3. S.A. Sergiienko, ОL Kukla, P.S. Yaremov, V.N. Solomakha, O.V. Shvets, Sens. Actuators B 177, 643 (2013). https://doi.org/10.1016/j.snb.2012.11.008

    Article  CAS  Google Scholar 

  4. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007). https://doi.org/10.1016/j.mseb.2007.01.044

    Article  CAS  Google Scholar 

  5. H. Najafi-Ashtiani, J. Mater. Sci. 30, 12224 (2019). https://doi.org/10.1007/s10854-019-01581-w

    Article  CAS  Google Scholar 

  6. J. Liu, G. Chen, Y. Yu, Y. Wu, M. Zhou, H. Zhang, C. Lv, Y. Zheng, F. He, RSC Adv. 5, 44306 (2015). https://doi.org/10.1039/C5RA05212B

    Article  CAS  Google Scholar 

  7. Q. Zhang, C. Chen, Y. Liu, H. Pan, H. Du, Y. Su, H. Tai, G. Xie, M. Xu, X. Du, J. Mater. Sci. 30, 11395 (2019). https://doi.org/10.1007/s10854-019-01488-6

    Article  CAS  Google Scholar 

  8. Z. Zhang, C. Yin, L. Yang, J. Jiang, Y. Guo, J. Alloys Compd. 785, 819 (2019). https://doi.org/10.1016/j.jallcom.2019.01.244

    Article  CAS  Google Scholar 

  9. J. Zhang, Z. Qin, D. Zeng, C. Xie, Phys. Chem. Chem. Phys. 19, 6313 (2017). https://doi.org/10.1039/C6CP07799D

    Article  CAS  Google Scholar 

  10. X. Wang, P. Ren, H. Tian, H. Fan, C. Cai, W. Liu, J. Alloys Compd. 669, 29 (2016). https://doi.org/10.1016/j.jallcom.2016.01.225

    Article  CAS  Google Scholar 

  11. J.D.P. Mauro Epifani, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, J.R. Morante, J. Phys. Chem. 112, 19540 (2008). https://doi.org/10.1021/jp804916g

    Article  CAS  Google Scholar 

  12. S. Pati, S.B. Majumder, P. Banerji, J. Alloys Compd. 541, 376 (2012). https://doi.org/10.1016/j.jallcom.2012.07.014

    Article  CAS  Google Scholar 

  13. Y. Wei, C. Chen, G. Yuan, S. Gao, J. Alloys Compd. 681, 43 (2016). https://doi.org/10.1016/j.jallcom.2016.04.220

    Article  CAS  Google Scholar 

  14. S. Majumder, S. Hussain, S.N. Das, R.B. Bhar, A.K. Pal, Vacuum. 82, 760 (2008). https://doi.org/10.1016/j.vacuum.2007.11.002

    Article  CAS  Google Scholar 

  15. N. Somjaijaroen, R. Sakdanuphab, N. Chanlek, P. Chirawatkul, A. Sakulkalavek, Vacuum. 166, 212 (2019). https://doi.org/10.1016/j.vacuum.2019.05.017

    Article  CAS  Google Scholar 

  16. V. Agrahari, M.C. Mathpal, S. Kumar, M. Kumar, A. Agarwal, J. Mater. Sci. 27, 6020 (2016). https://doi.org/10.1007/s10854-016-4525-2

    Article  CAS  Google Scholar 

  17. S. Mehraj, M.S. Ansari, Thin Solid Films 589, 57 (2015). https://doi.org/10.1016/j.tsf.2015.04.065

    Article  CAS  Google Scholar 

  18. Q.A. Drmosh, Z.H. Yamani, A.K. Mohamedkhair, A.H.Y. Hendi, A. Ibrahim, Vacuum 156, 68 (2018). https://doi.org/10.1016/j.vacuum.2018.07.011

    Article  CAS  Google Scholar 

  19. K. Vijayarangamuthu, S. Rath, J. Alloys Compd. 610, 706 (2014). https://doi.org/10.1016/j.jallcom.2014.04.187

    Article  CAS  Google Scholar 

  20. X. Wang, S. Qiu, C. He, G. Lu, W. Liu, J. Liu, RSC Adv. 3, 19002 (2013). https://doi.org/10.1039/C3RA43266A

    Article  CAS  Google Scholar 

  21. K.K. Khun, A. Mahajan, R.K. Bedi, Electron. Mater. Lett. 7, 303 (2011). https://doi.org/10.1007/s13391-011-0140-9

    Article  CAS  Google Scholar 

  22. F.H. Aragón, L. Villegas-Lelovsky, J.B.L. Martins, Ja.H. Coaquira, R. Cohen, L.C.C.M. Nagamine, P.C. Morais, J. Phys. D 50, 115103 (2017). https://doi.org/10.1088/1361-6463/aa594c

    Article  CAS  Google Scholar 

  23. B. Varghese, Acid-Base: Surface Electron Donatlng & Catalytic Properties of Some Binary Mixed Oxides Containing Rare Earth Elements (Cochin University Of Science And Technology, Eattappilly, 1998)

    Google Scholar 

  24. Y. Zhao, Y. Li, W. Wan, X. Ren, H. Zhao, Mater. Lett. 218, 22 (2018). https://doi.org/10.1016/j.matlet.2018.01.136

    Article  CAS  Google Scholar 

  25. H.V. Fajardo, E. Longo, L. Probst, A. Valentini, N. Carreño, M.R. Nunes, A.P. Maciel, E.R. Leite, Nanoscale Res. Lett. 3, 194 (2008). https://doi.org/10.1007/s11671-008-9135-3

    Article  CAS  Google Scholar 

  26. X. Li, Y. Liu, S. Li, J. Huang, Y. Wu, D. Yu, Nanoscale Res. Lett. 11, 470 (2016). https://doi.org/10.1186/s11671-016-1685-1

    Article  CAS  Google Scholar 

  27. G. Singh, N. Kohli, R.C. Singh, J. Mater. Sci. 28, 2257 (2017). https://doi.org/10.1007/s10854-016-5796-3

    Article  CAS  Google Scholar 

  28. G. Singh, R. Thangaraj, R.C. Singh, Ceram. Int. 42, 4323 (2016). https://doi.org/10.1016/j.ceramint.2015.11.111

    Article  CAS  Google Scholar 

  29. G. Singh, M. Kaur, B. Arora, R.C. Singh, J. Mater. Sci. 29, 867 (2018). https://doi.org/10.1007/s10854-017-7982-3

    Article  CAS  Google Scholar 

  30. S. Deepa, B. Thomas, K. Prasannakumari, J. Mater. Sci. 30, 16579 (2019). https://doi.org/10.1007/s10854-019-02037-x

    Article  CAS  Google Scholar 

  31. W.Q. Li, S.Y. Ma, Y.F. Li, X.B. Li, C.Y. Wang, X.H. Yang, L. Cheng, Y.Z. Mao, J. Luo, D.J. Gengzang, G.X. Wan, X.L. Xu, J. Alloys Compd. 605, 80 (2014). https://doi.org/10.1016/j.jallcom.2014.03.182

    Article  CAS  Google Scholar 

  32. D. Han, J. Yang, F. Gu, Z. Wang, RSC Adv. 6, 45085 (2016). https://doi.org/10.1039/C6RA06816B

    Article  CAS  Google Scholar 

  33. V. Balouria, N.S. Ramgir, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Sens. Actuators B 219, 125 (2015). https://doi.org/10.1016/j.snb.2015.04.113

    Article  CAS  Google Scholar 

  34. V. Balouria, A. Kumar, A. Singh, S. Samanta, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, Sens. Actuators B 157, 466 (2011). https://doi.org/10.1016/j.snb.2011.05.002

    Article  CAS  Google Scholar 

  35. V. Balouria, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Sens. Actuators B 176, 38 (2013). https://doi.org/10.1016/j.snb.2012.08.064

    Article  CAS  Google Scholar 

  36. V. Balouria, A. Kumar, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Sens. Actuators B 181, 471 (2013). https://doi.org/10.1016/j.snb.2013.02.013

    Article  CAS  Google Scholar 

  37. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 505, 416 (2010). https://doi.org/10.1016/j.jallcom.2010.06.091

    Article  CAS  Google Scholar 

  38. F.A. Mir, K.M. Batoo, Appl. Phys. A. 122, 418 (2016). https://doi.org/10.1007/s00339-016-9948-3

    Article  CAS  Google Scholar 

  39. G. Singh, R.C. Virpal, Singh. Sens. Actuators B 282, 373 (2019). https://doi.org/10.1016/j.snb.2018.11.086

    Article  CAS  Google Scholar 

  40. L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, P.K. Chu, J. Raman Spectr. 43, 1423 (2012). https://doi.org/10.1002/jrs.4078

    Article  CAS  Google Scholar 

  41. A. Dieguez, A. Romano-Rodriguez, A. Vilà, J. Morante, J. Appl. Phys. 90, 1550 (2001). https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  42. V. Kalimuthu, S. Rath, J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.04.187

    Article  Google Scholar 

  43. M.N. Rumyantseva, A.M. Gaskov, N. Rosman, T. Pagnier, J.R. Morante, Chem. Mater. 17, 893 (2005). https://doi.org/10.1021/cm0490470

    Article  CAS  Google Scholar 

  44. J. Mazloom, F.E. Ghodsi, Mater. Res. Bull. 48, 1468 (2013). https://doi.org/10.1016/j.materresbull.2012.12.069

    Article  CAS  Google Scholar 

  45. Y.-Y. Lin, H.-Y. Lee, C.-S. Ku, L.-W. Chou, A.T. Wu, Appl. Phys. Lett. 102, 111912 (2013). https://doi.org/10.1063/1.4798253

    Article  CAS  Google Scholar 

  46. F. Trani, M. Causà, D. Ninno, G. Cantele, V. Barone, Phys. Rev. B. 77, 245410 (2008). https://doi.org/10.1103/PhysRevB.77.245410

    Article  CAS  Google Scholar 

  47. J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, Acta Mater. 57, 278 (2009). https://doi.org/10.1016/j.actamat.2008.09.013

    Article  CAS  Google Scholar 

  48. S. Deepa, K. Prasanna Kumari, B. Thomas, Ceram. Int. 43, 17128 (2017). https://doi.org/10.1016/j.ceramint.2017.09.134

    Article  CAS  Google Scholar 

  49. S.-T. Jean, Y.-C. Her, J. Appl. Phys. 105, 024310 (2009). https://doi.org/10.1063/1.3068487

    Article  CAS  Google Scholar 

  50. G. Singh, R.C. Singh, Ceram. Int. 43, 2350 (2017). https://doi.org/10.1016/j.ceramint.2016.11.021

    Article  CAS  Google Scholar 

  51. Z. Jiang, R. Zhao, B. Sun, G. Nie, H. Ji, J. Lei, C. Wang, Ceram. Int. 42, 15881 (2016). https://doi.org/10.1016/j.ceramint.2016.07.060

    Article  CAS  Google Scholar 

  52. W. An, X. Wu, X.C. Zeng, J. Phys. Chem. C 112, 5747 (2008). https://doi.org/10.1021/jp711105d

    Article  CAS  Google Scholar 

  53. G. Singh, N. Kohli, R.C. Singh, J. Mater. Sci. 28, 13013 (2017). https://doi.org/10.1007/s10854-017-7133-x

    Article  CAS  Google Scholar 

  54. H. Gong, Y.J. Wang, S.C. Teo, L. Huang, Sens. Actuators B 54, 232 (1999). https://doi.org/10.1016/S0925-4005(99)00119-7

    Article  CAS  Google Scholar 

  55. N. Kohli, O. Singh, R.C. Singh, Sens. Actuators B 158, 259 (2011). https://doi.org/10.1016/j.snb.2011.06.016

    Article  CAS  Google Scholar 

  56. J.K.L. Gun-Joo, W. Lee, R.P. Dwivedi, C. Lee, T. Ko, Electron. Mater. Lett. 13, 260 (2017). https://doi.org/10.1007/s13391-017-1719-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST, New Delhi, for providing financial support through Project No. INT/UKP/P-21/2018 in support of the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Mahajan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohal, M.K., Mahajan, A., Gasso, S. et al. Rare earth-tuned oxygen vacancies in gadolinium-doped tin oxide for selective detection of volatile organic compounds. J Mater Sci: Mater Electron 31, 8446–8455 (2020). https://doi.org/10.1007/s10854-020-03379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03379-7

Navigation