Skip to main content

Advertisement

Log in

Boosting thermoelectric performance in Cu3SbS4-based compounds through incorporating SiC nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu3SbS4-based compounds have received significant attention as a promising alternative for p-type thermoelectric materials due to their low-cost, earth abundant resource, and eco-friendly characteristics. However, the practical applications for waste heat utilization and solid-state refrigeration are still limited because of their low conversion efficiency. Herein, a high thermoelectric performance was realized in SiC nanoparticles-dispersed Cu3Sb0.85Bi0.06Sn0.05S4 composites. SiC nanoparticles additives generate the interface potential barriers and increased energy-dependent carrier scattering, leading to enhanced power factor. Moreover, SiC nanoparticles significantly reduces the lattice thermal conductivity due to enhanced phonon scattering. As a result, a high ZT value of 0.61 is achieved at 573 K for the CASBT/0.05 wt % SiC sample, which is enhanced by 39% compared with the pristine sample. Meanwhile, an outstanding average ZT of 0.31 is obtained among the investigated temperature range. This work provides a feasible guidance for designing advanced thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.J. Snyder, E.S. Toberer, Nat. mater. 7, 105 (2008)

    CAS  Google Scholar 

  2. W.D. Liu, L. Yang, Z.G. Chen, J. Zou, Adv. Mater. 32, 1905703 (2020)

    CAS  Google Scholar 

  3. H. Deng, X. Lou, W. Lu, J. Zhang, D. Li, S. Li, Q. Zhang, X. Zhang, X. Chen, D. Zhang, Y. Zhang, G. Tang, Nano Energy 81, 105649 (2021)

    CAS  Google Scholar 

  4. W. He, D. Wang, H. Wu, Y. Xiao, Y. Zhang, D. He, Y. Feng, Y.J. Hao, J.F. Dong, R. Chetty, L. Hao, D. Chen, J. Qin, Q. Yang, X. Li, J.M. Song, Y. Zhu, W. Xu, Ch. Niu, X. Li, G. Wang, Ch. Liu, M. Ohta, S.J. Pennycook, J. He, J.F. Li, L.D. Zhao, Science 365, 1418 (2019)

    CAS  Google Scholar 

  5. X. Shi, J. Zhou, Z. Chen, Chem. Rev. 120, 7399 (2020)

    CAS  Google Scholar 

  6. S. Li, X. Lou, B. Zou, Y. Hou, J. Zhang, D. Li, J. Fang, T. Feng, D. Zhang, Y. Liu, J. Liu, G. Tang, Mater. Today Phys. 21, 100542 (2021)

    CAS  Google Scholar 

  7. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Adv. Mater. 29, 1605884 (2017)

    Google Scholar 

  8. W. Liu, S. Bai, J. Materiomics 5, 321 (2019)

    Google Scholar 

  9. U.S. Shenoy, D.K. Bhat, J. Alloys Compd. 892, 162221 (2022)

    CAS  Google Scholar 

  10. P. Jood, J.P. Male, S. Anand, Y. Matsushita, Y. Takagiwa, M.G. Kanatzidis, G.J. Snyder, M. Ohta, J. Am. Chem. Soc. 142, 15464 (2020)

    CAS  Google Scholar 

  11. U.S. Shenoy, D.K. Bhat, Mater. Adv. 2, 6267 (2021)

    CAS  Google Scholar 

  12. Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, G.J. Snyder, Nature 473, 66 (2011)

    CAS  Google Scholar 

  13. U.S. Shenoy, D.K. Bhat, Mater. Today Chem. 18, 100384 (2020)

    CAS  Google Scholar 

  14. J. Martin, L. Wang, L. Chen, G.S. Nolas, Phys. Rev. B 79, 115311 (2009)

    Google Scholar 

  15. Z. Ma, C. Wang, Y. Chen, L. Li, S. Li, J. Wang, H. Zhao, Mater. Today Phys. 17, 100350 (2021)

    CAS  Google Scholar 

  16. S. Zhi, J. Li, L. Hu, J. Li, N. Li, H. Wu, F. Liu, C. Zhang, W. Ao, H. Xie, X. Zhao, S.J. Pennycook, T. Zhu, Adv. Sci. 8, 2100220 (2021)

    CAS  Google Scholar 

  17. R. Liu, H. Chen, K. Zhao, Y. Qin, B. Jiang, T. Zhang, G. Sha, X. Shi, C. Uher, W. Zhang, L. Chen, Adv. Mater. 29, 1702712 (2017)

    Google Scholar 

  18. K. Biswas, J. He, I.D. Blum, Ch. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012)

    CAS  Google Scholar 

  19. Z. Chen, X. Zhang, Y. Pei, Adv. Mater. 30, 1705617 (2018)

    Google Scholar 

  20. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348, 109 (2015)

    CAS  Google Scholar 

  21. Y. Pei, A. LaLonde, S. Iwanaga, G.J. Snyder, Energy Environ. Sci. 4, 2085 (2011)

    CAS  Google Scholar 

  22. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun. 6, 8144 (2015)

    Google Scholar 

  23. U.S. Shenoy, D.K. Bhat, ACS Sustainable Chem. Eng. 38, 13033 (2021)

    Google Scholar 

  24. C. Chen, H. Wang, Y.Y. Chen, T. Daya, G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014)

    CAS  Google Scholar 

  25. U.S. Shenoy, D.K. Bhat, J. Mater. Chem. C 8, 2036 (2020)

    CAS  Google Scholar 

  26. T. Hussain, X. Li, M.H. Danish, M.U. Rehman, J. Zhang, D. Li, G. Chen, G. Tang, Nano Energy 73, 104832 (2020)

    CAS  Google Scholar 

  27. D.K. Bhat, U.S. Shenoy, J. Alloys Compd. 834, 155181 (2020)

    CAS  Google Scholar 

  28. J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I.T. Witting, A. Faghaninia, Y. Chen, A. Jain, L. Chen, G.J. Snyder, Y. Pei, Joule 2, 976 (2018)

    CAS  Google Scholar 

  29. D.K. Bhat, U.S. Shenoy, J. Alloys Compd. 834, 155989 (2020)

    Google Scholar 

  30. Q. Zhang, Z. Ti, Y. Zhu, Y. Zhang, Y. Cao, S. Li, M. Wang, D. Li, B. Zou, Y. Hou, P. Wang, G. Tang, ACS Nano (2021). https://doi.org/10.1021/acsnano.1c05650

    Article  Google Scholar 

  31. D.K. Bhat, U.S. Shenoy, New J. Chem. 44, 17664 (2020)

    Google Scholar 

  32. F. Sun, J. Dong, H. Tang, P. Shang, H. Zhuang, H. Hu, C. Wu, Y. Pan, J. Li, Nano Energy 57, 835 (2019)

    CAS  Google Scholar 

  33. J.M. Li, H.W. Ming, B.L. Zhang, C.J. Song, L. Wang, H.X. Xin, J. Zhang, X.Y. Qin, D. Li, Mater. Chem. Front. 5, 324 (2021)

    CAS  Google Scholar 

  34. Y. Yang, P. Ying, J. Wang, X. Liu, Z. Du, Y. Chao, J. Cui, J. Mater. Chem. A 5, 18808 (2017)

    CAS  Google Scholar 

  35. K. Chen, B. Du, N. Bonini, C. Weber, H. Yan, M.J. Reece, J. Phys. Chem. C 120, 27135 (2016)

    CAS  Google Scholar 

  36. D. Chen, Y. Zhao, Y. Chen, T. Lu, Y. Wang, J. Zhou, Z. Liang, Adv. Electron. Mater. 2, 1500473 (2016)

    Google Scholar 

  37. R. Chetty, A. Bali, M.H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, R.C. Mallik, Acta Mater. 100, 266 (2015)

    CAS  Google Scholar 

  38. A. Pfitzner, S. Reiser, Z. Kristallogr, Cryst. Mater. 217, 51 (2002)

    CAS  Google Scholar 

  39. K. Chen, C.D. Paola, B. Du, R. Zhang, S. Laricchia, N. Bonini, C. Weber, I. Abrahams, H. Yan, M. Reecea, J. Mater. Chem. C 6, 8546 (2018)

    CAS  Google Scholar 

  40. G. Lee, J. Pi, I. Kim, J. Electron. Mater. 49, 2781 (2020)

    CAS  Google Scholar 

  41. Q. Wang, J. Lia, J. Li, Phys. Chem. Chem. Phys. 20, 1460 (2018)

    CAS  Google Scholar 

  42. T. Tanishita, K. Suekuni, H. Nishiate, C. Lee, M. Ohtaki, Phys. Chem. Chem. Phys. 22, 2081 (2020)

    CAS  Google Scholar 

  43. M. Shen, S. Lu, Z. Hang, H. Liu, W. Shen, C. Fang, Q. Wang, L. Chen, Y. Zhang, X. Jia, ACS Appl Mater. Interf 12, 8271 (2020)

    CAS  Google Scholar 

  44. J. Pi, G. Lee, I. Kim, Electron. Mater. Lett. 17, 427 (2021)

    CAS  Google Scholar 

  45. K.F. Hsu, K. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004)

    CAS  Google Scholar 

  46. J. Li, Q. Tan, J. Li, D. Liu, F. Li, Z. Li, M. Zou, K. Wang, Adv. Funct. Mater. 23, 4317 (2013)

    CAS  Google Scholar 

  47. S. Li, X. Liu, Y. Liu, F. Liu, J. Luo, F. Pan, Nano Energy 39, 297 (2017)

    CAS  Google Scholar 

  48. J. Hwang, M. Lee, B. Yu, M. Han, W. Kim, J. Kim, R.A.R.A. Orabi, H. Wang, S. Acharya, J. Kim, Y. Jin, H. Park, S. Kim, S. Yang, S. Kim, J. Mater. Chem. A 9, 14851 (2021)

    CAS  Google Scholar 

  49. M.S. El-Asfoury, S.M. Abdou, A. Nassef, JOM 73, 2808 (2021)

    CAS  Google Scholar 

  50. P. Qin, Z.H. Ge, J. Feng, J. Alloys Compd. 696, 782 (2017)

    CAS  Google Scholar 

  51. Z. Li, J.F. Li, W. Zhao, Q. Tan, T. Wei, C. Wu, Z. Xing, Appl. Phys. Lett. 104, 113905 (2014)

    Google Scholar 

  52. D. Zhang, J. Lei, W. Guan, Z. Ma, C. Wang, L. Zhang, Z. Cheng, Y. Wang, J. Alloys Compd. 784, 1276 (2019)

    CAS  Google Scholar 

  53. I.F. Ioffe, Semiconductor thermoelements and thermoelectric Cooling (Infosearch Ltd, London, 1957)

    Google Scholar 

  54. N.W. Aschcroft, N.D. Mermin, Solid state physics (HoltSaunders, Philadelphia, 1976)

    Google Scholar 

  55. J.M. Li, H.W. Ming, C.J. Song, L. Wang, H.X. Xin, Y.J. Gu, J. Zhang, X.Y. Qin, D. Li, Mater. Today Energy 18, 100491 (2020)

    Google Scholar 

  56. S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, K.L. Stokes, Adv. Energy Mater. 1, 1141 (2011)

    CAS  Google Scholar 

  57. X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan, J. Xing, S. Gu, J. Huang, J. Ma, J. Wang, L. Wang, W. Jiang, Adv. Energy Mater. 10, 1902986 (2020)

    CAS  Google Scholar 

  58. G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, L. Zhao, J. Am. Chem. Soc. 138, 13647 (2016)

    CAS  Google Scholar 

  59. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015)

    Google Scholar 

  60. H. Hu, F. Sun, J. Dong, H. Zhuang, B. Cai, J. Pei, J. Li, A.C.S. Appl, Mater. Interf 12, 17852 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No. 11774178 and 21671167), Natural Science Foundation of Jiangsu Province (BK20211361, BX2021054), and College Natural Science Research Project of Jiangsu Province (20KJA430004).

Author information

Authors and Affiliations

Authors

Contributions

DZ conceptualized, designed the work, and wrote the first draft of the manuscript. YH, JC, and JX synthesized the sample. MZ measured the thermoelectric properties. DZ and QZ revised the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Dewei Zhang or Qinfang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Hui, Y., Cai, J. et al. Boosting thermoelectric performance in Cu3SbS4-based compounds through incorporating SiC nanoparticles. J Mater Sci: Mater Electron 33, 5214–5223 (2022). https://doi.org/10.1007/s10854-022-07710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07710-2

Navigation