Skip to main content
Log in

Studies of structural, dielectric and electrical characteristics of nickel-modified barium titanate for device applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present report, an attempt has been made to develop (via synthesis and characterization) a lead-free multifunctional material by introducing Ni in BaTiO3 of a composition of (Ba0.5Ni0.5)TiO3 for the temperature sensor and bandwidth applications. The phase analysis using X-ray diffraction data reveals the mono-phase nature of the developed system in the tetragonal crystal symmetry. The variation of structural parameters such as lattice constant, unit volume, change in tetragonality ratio from 1.0082 to c/a = 1.5792, are evidence of structural distortion generated in the unit cell of BaTiO3 on the addition of nickel at its Ba-site of the parent compound. This distortion significantly affects the dielectric, ferroelectric, impedance, and conductivity characteristics of barium titanate. The electron microscopic studies of the material show the compactness and uniform distribution of grains almost the same size over the surface of the pellet sample. The frequency-temperature-dependent studies of the material exhibit that ferroelectric-paraelectric phase transition temperature (Tc) of BaTiO3 (~ 120 °C) has been diffused or shifted, and hence no phase transition or dielectric anomaly is observed in the experimental temperature range (30–500 °C) in Ni-rich barium titanate (i.e., Ba0.5Ni0.5)TiO3. The relative permittivity even at 450 °C is found to be in the order of 103 with conductivity in the order of 10–4 Ω cm−1. However, room temperature hysteresis loop provides the saturation polarization of (Ps = 3.1416 μC/cm2), remnant polarization (Pr = 0.8478 μC/cm2) and coercive field (EC = 87.76 kV/cm). The analysis of various electrical data (parameters), such as relative permittivity, loss tangent, impedance as a function of temperature and frequency has provided dielectric relaxation and conduction mechanism in the material. Based on the above parameters, it may be concluded that the material can be a suitable candidate for multifunctional applications like temperature sensors, bandwidth, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. V. Buscaglia, M.T. Buscaglia, G. Canu, BaTiO3-based ceramics: fundamentals properties and applications, encyclopedia of materials: technical ceramics and glasses. Mater. Sci. 3, 311–344 (2021)

    Google Scholar 

  2. A.C. Ianculescu, C.A.V. Maria Crisan, M. Raileanu, B.S. Vasile, M. Calugaru, D. Crisan, N. Dragan, L. Curecheriu, L. Mitoseriu, Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater. Charact. 106, 195–207 (2015)

    Article  CAS  Google Scholar 

  3. B.C. Das, A.K.M. Akther, A.A. Hossain, Rietveld refined structure, ferroelectric, magnetic and magnetoelectric response of Gd- substituted Ni-Cu-Zn ferrite and Ca, Zr co-doped BaTiO3 multiferroic composites. J. Alloy. Compd. 867, 159068 (2021)

    Article  CAS  Google Scholar 

  4. W. Eerenstein, N. Mathur, J.F. Scoot, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  5. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  6. G. Catalan, J.F. Scoot, Physics and application of bismuth ferrite. Adv. Mater. 21, 1–9 (2009)

    Article  Google Scholar 

  7. D. Khomskii, Classifying multiferroics: mechanism and effects. Physics 2, 20 (2009)

    Article  Google Scholar 

  8. J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead–free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  9. A. Rani, J. Kolte, P. Gopalan, Phase formation, microstructure, electrical and magnetic properties of Mn substituted barium titnate. Ceram. Int. 41, 14057–14063 (2015)

    Article  CAS  Google Scholar 

  10. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi1−xFexO3 ceramics. J. Appl. Phys. 110, 043914 (2011)

    Article  Google Scholar 

  11. T.L. Phan, P. Zhang, D. Grinting, S.C. Yu, N.X. Nghia, N.V. Dang, V.D. Lam, Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics. J. Appl. Phys. 112, 013909 (2012)

    Article  Google Scholar 

  12. I.N. Apostolova, A.T. Apostolova, S. Golrokh Bahoosh, J.M. Wesselinowa, Orign of ferromagnetism in transition metal dped BaTiO3. J. Appl. Phys. 113, 203904 (2013)

    Article  Google Scholar 

  13. F. Maldonado, S. Jácome, A. Stashans, Co-doping of Ni and Fe in tetragonal BaTiO3. Comput. Condens. Matter 13, 49–54 (2017)

    Article  Google Scholar 

  14. S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014)

    Article  CAS  Google Scholar 

  15. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti Jr., J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017)

    Article  Google Scholar 

  16. M.M. Yuan, L. Cheng, Q. Xu, W.W. Wu, S. Bai, L. Gu, Z. Wang, J. Lu, H.P. Li, Y. Qin, T. Jing, Z.L. Wang, Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Adv. Mater. 26, 7432–7437 (2014)

    Article  CAS  Google Scholar 

  17. L. Cheng, M. Yuan, L. Gu, Z. Wang, Y. Qin, T. Jing, Z.L. Wang, Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598–606 (2015)

    Article  CAS  Google Scholar 

  18. N.R. Alluri, B. Saravanakumar, S.J. Kim, Flexible, hybrid piezoelectric film (BaTi(1–x)ZrxO3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS Appl. Mater. Interfaces 7, 9831–9840 (2015)

    Article  CAS  Google Scholar 

  19. A.F. Devonshire, “XCVI. Theory of barium titanate—part I”, London Edinburgh Dublin Philos. Mag. J. Sci. 40(309), 1040–1063 (1949)

    Article  CAS  Google Scholar 

  20. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric ceramics (Academic Press, London, 1971)

    Google Scholar 

  21. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer, composites with ultrahigh dielectric constant and low loss. Compos. A 125, 105521 (2019)

    Article  CAS  Google Scholar 

  22. M. Saleem, M.S. Butt, A. Maqbool, M.A. Umer, M. Shahid, F. Javaid, R.A. Malik, H. Jabbar, H.M.W. Khalil, L.D. Hwan, M. Kim, B.K. Koo, S.J. Jeong, Percolation phenomena of dielectric permittivity of a microwave-sintered BaTiO3-Ag nanocomposite for high energy capacitor. J. Alloy. Compd. 822, 153525 (2020)

    Article  CAS  Google Scholar 

  23. S.S. Vadla, T. Costanzo, S. John, G. Caruntu, S.C. Roy, Local probing of magnetoelectric coupling in BaTiO3-Ni 1–3 composites. Scr. Mater. 159, 33–36 (2019)

    Article  CAS  Google Scholar 

  24. S.K. Ray, J. Cho, J. Hur, A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 290, 119 (2021)

    Article  Google Scholar 

  25. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Correlation between structure, dielectric and multiferroic properties of lead free Ni modified BaTiO3 solid solution. Ceram. Int. 46, 27336–27351 (2020)

    Article  CAS  Google Scholar 

  26. H. Zhao, X. Yang, D. Pang, X. Long, Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3-Bi(Ni2/3Ta1/3)O3 lead-free ceramics. Ceram. Int. 47, 22734–22740 (2021)

    Article  CAS  Google Scholar 

  27. C.P. Kempter, Vegard’s Law. Phys. Status Solidi 18, K117–K118 (1966)

    Article  CAS  Google Scholar 

  28. Y.C. Huang, S.S. Cgen, W.H. Tuan, Process window of BaTiO3–Ni ferroelectric-ferromagnetic composites. J. Am. Ceram. Soc. 90, 1438–1443 (2007)

    Article  CAS  Google Scholar 

  29. R.N.P. Rutuparna Das, Choudhary, structural, electrical, and leakage-current characteristics of double perovskite: Sm2CoMnO6. Appl. Phys. A 125, 864 (2019)

    Article  Google Scholar 

  30. S. Chikada, K. Hirose, T. Yamamoto, Analysis of local environment of Fe ions in hexagonal BaTiO3 Japan. J. Appl. Phys. 49, 091502 (2010)

    Article  Google Scholar 

  31. B. Park. An interactive powder diffraction data interpretations and indexing program version 2.1, E. WU School of Physical Sciences, Flinders University of South Australia, SA 5042

  32. H. Gong, X. Wang, S. Zhang, Z. Tian, L. Li, Electrical and reliability characteristics of Mn-doped nano BaTiO3-based ceramics for ultrathin multilayer ceramic capacitor application. J. Appl. Phys. 112, 114119 (2012)

    Article  Google Scholar 

  33. H. Schmid, Multi-ferroic magnetoelectric. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  34. A. Kumar, I. Rivera, R.S. Katiyar, J.F. Scott, Multiferroic Pb(Fe0.66W0.33)0.80Ti0.20O3 thin films: a room-temperature relaxor ferroelectric and weak ferromagnetic. Appl. Phys. Lett. 92, 132913 (2008)

    Article  Google Scholar 

  35. P. Mandal, A. Iyo, Y. Tanaka, A. Sundaresan, C.N.R. Rao, Structure, magnetism and giant dielectric constant of BiCr0.5Mn0.5O3 synthesized at high pressures. J. Mater. Chem. 20, 1646–1650 (2010)

    Article  CAS  Google Scholar 

  36. Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K. Ho Lam, M. Liu, D. Lin, Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 3, 5811–5824 (2015)

    Article  CAS  Google Scholar 

  37. V.I. Gibalov, G.J. Pietsch, Dynamics of dielectric barrier discharges in different arrangements. Plasma Sources Sci. Technol. 21, 024010 (2012)

    Article  Google Scholar 

  38. J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiran, Unexpected dielectric response in lead zirconate titanate ceramics: the role of ferroelectric domain wall pinning effects. Appl. Phys. Lett. 91, 0429021 (2007)

    Article  Google Scholar 

  39. K.R.S. Preethi Meher, K.B.R. Varma, Colossal dielectric behavior of semiconducting Sr2TiMnO6 ceramics. J. Appl. Phys. 105, 034113 (2009)

    Article  Google Scholar 

  40. C. Behera, P.R. Das, R.N.P. Choudhary, Structural and electrical properties of La-modified BiFeO3–BaTiO3 composites. J. Mater. Sci.: Mater. Electron. 25, 2086–2095 (2014)

    CAS  Google Scholar 

  41. C. Behera, P.R. Das, R.N.P. Choudhary, Structural and electrical properties of mechanothermally synthesized NiFe2O4 nanoceramics. J. Electron. Mater. 43, 3539–3549 (2014)

    Article  CAS  Google Scholar 

  42. R.N.P. Choudhary, C. Behera, P.R. Das, R.R. Das, Development of bismuth-based electronic materials from Indian red mud. Ceram. Int. 40, 12253–12264 (2014)

    Article  CAS  Google Scholar 

  43. E. Pervaiz, I.H. Gul, A. Habib, Hydrothermal synthesis, structural and electrical properties of antimony (Sb3+) substituted nickel ferrites. J. Supercond. Novel Magn. 27, 881–890 (2014)

    Article  CAS  Google Scholar 

  44. J.S. Kim, Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J. Phys. Soc. Jpn. 70, 3129–3133 (2001)

    Article  CAS  Google Scholar 

  45. H. Nara, T. Yokoshima, T. Osaka, Technology of electrochemical impedance spectroscopy for an energy-sustainable society. Curr. Opin. Electrochem. 20, 66–77 (2020)

    Article  CAS  Google Scholar 

  46. C. Behera, A.K. Pattanaik, Structural, dielectric and ferroelectric properties of lead free Gd modified BiFeO3–BaTiO3 solid solution. J. Mater. Sci.: Mater. Electron. 30, 5470–5477 (2019)

    CAS  Google Scholar 

  47. W. Chen, X. Zhao, J. Sun, L. Zhang, L. Zhong, Effect of the Mn doping concentration on the dielectric and ferroelectric properties of different-routes-fabricated BaTiO3-based ceramics. J. Alloy. Compd. 670, 48–54 (2016)

    Article  CAS  Google Scholar 

  48. J. Liu, X. Wei, Y. Lian, Q. Liu, X. Xu, D. Lu, Influence of Sr ions on the structure and dielectric properties of Cu/Nb Co-doped BaTiO3 ceramics. Ceram. Int. 47, 18669–18676 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to C. Behera.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Patel, P., Pradhan, N. et al. Studies of structural, dielectric and electrical characteristics of nickel-modified barium titanate for device applications. J Mater Sci: Mater Electron 33, 1657–1669 (2022). https://doi.org/10.1007/s10854-022-07709-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07709-9

Navigation