Skip to main content
Log in

Polymer composites filled with core–shell structured nanofillers: effects of shell thickness on dielectric and thermal properties of composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 03 February 2022

This article has been updated

Abstract

In this study, we explore poly(vinylidene fluoride) (PVDF) filled with the core–shell nanofillers of silicon dioxide-coated β-silicon carbide whisker (β-SiCw@SiO2), and investigate the effects of core–shell structure and shell thickness on the composite thermal and dielectric properties. The formation of an insulating SiO2 layer can not only substantially reduce the dielectric loss of polymer composites but also suppress their dielectric constant (k). Further increasing shell thickness continues inhibiting the dielectric loss while rendering the k nearly unaffected. We attribute the underlying mechanism to the different effects of shell thickness on long-range and short-range charge migration. In addition to the constraint on charge transport, the SiO2 shell improves the filler–polymer interfacial compatibility and therefore leads to a large improvement in the thermal conductivity (TC) of the composites. The synthesized core–shell fillers afford high k and enhanced TC as well as low loss in the composites, which would enable a wide range of applications in dielectric and electrical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. Z Dang J Yua J Zha T Zhou S Li G Hu 2012 Progress Mater. Sci. 57 4 660 723 https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  2. C Liu S Liu J Lin L Wang Y Huang X Liu 2019 Polymers 11 7 1135 https://doi.org/10.3390/polym11071135

    Article  CAS  Google Scholar 

  3. F Gao Y Guo K Zhang N Meng W Wu Y Wang J Xu E Pawlikowska M Szafran 2019 IET Nanodielectr. 2 4 135 141 https://doi.org/10.1049/iet-nde.2019.0013

    Article  Google Scholar 

  4. Y Lu S Yu X Zeng R Sun C Wong 2018 IET Nanodielectr. 1 4 137 142 https://doi.org/10.1049/iet-nde.2018.0015

    Article  Google Scholar 

  5. B Li M Yuan S Zhang R Rajagopalan M Lanagan 2018 Appl. Phys. Lett. 113 19 193903 https://doi.org/10.1063/1.5058185

    Article  CAS  Google Scholar 

  6. X Zhou J Yang Z Gu Y Wei G Li C Hao Q Lei 2021 Adv. Eng. Mater. 23 2100008 https://doi.org/10.1002/adem.202100008

    Article  CAS  Google Scholar 

  7. H Luo D Zhang C Jiang X Yuan C Chen K Zhou 2015 ACS Appl. Mater. Interfaces 7 15 8061 8069 https://doi.org/10.1021/acsami.5b00555

    Article  CAS  Google Scholar 

  8. Y Jiang J Wang Q Zhang H Yang D Shen F Zhou 2019 Colloid Surf. A-Physicochem. Eng. Aspects 576 55 62 https://doi.org/10.1016/j.colsurfa.2019.05.039

    Article  CAS  Google Scholar 

  9. L Yu D Yang Q Wei L Zhang 2021 Compos. Sci. Technol. 209 108786 https://doi.org/10.1016/j.compscitech.2021.108786

    Article  CAS  Google Scholar 

  10. W Zhou X Li F Zhang C Zhang Z Li F Chen H Cai X Liu Q Chen Z Dang 2020 Compos. Part A-Appl. Sci. Manuf. 137 106021 https://doi.org/10.1016/j.compositesa.2020.106021

    Article  CAS  Google Scholar 

  11. P Wang X Zhang W Duan W Teng Y Liu Q Xie 2021 Chin. J. Chem. 39 1153 1158 https://doi.org/10.1002/cjoc.202000543

    Article  CAS  Google Scholar 

  12. X He J Zhou L Jin X Long H Wu L Xu Y Gong W Zhou 2020 Materials 13 15 3341 https://doi.org/10.3390/ma13153341

    Article  CAS  Google Scholar 

  13. M Yuan G Zhang B Li T Chung R Rajagopalan M Lanagan 2020 ACS Appl. Mater. Interfaces 12 12 14154 14164 https://doi.org/10.1021/acsami.0c00453

    Article  CAS  Google Scholar 

  14. W Zhou Y Kou M Yuan B Li H Cai Z Li F Chen X Liu G Wang Q Chen Z Dang 2019 Compos. Sci. Technol. 181 107686 https://doi.org/10.1016/j.compscitech.2019.107686

    Article  CAS  Google Scholar 

  15. Z Wang G Meng L Wang L Tian S Chen G Wu B Kong Y Cheng 2021 Sci. Rep. 11 2495

    Article  CAS  Google Scholar 

  16. M Zheng C Zhang Y Yang Z Xing X Chen S Zhong Z Dang 2020 IET Nanodielectr. 3 3 94 98 https://doi.org/10.1049/iet-nde.2020.0015

    Article  Google Scholar 

  17. Y Jiang Z Zhang Z Zhou H Yang Q Zhang 2019 Polymers 11 10 1541 https://doi.org/10.3390/polym11101541

    Article  CAS  Google Scholar 

  18. L Zhao L Yan C Wei Q Li X Huang Z Wang M Fu J Ren 2020 J. Phys. Chem. C 124 23 12723 12733

    Article  CAS  Google Scholar 

  19. Q Li S Tan H Gong J Lu W Zhang X Zhang Z Zhang 2021 Phys. Chem. Chem. Phys. 23 6 3856 3865 https://doi.org/10.1039/d0cp05233g

    Article  CAS  Google Scholar 

  20. B Li F Salcedo-Galan P Xidas E Manias 2018 ACS Appl. Nano Mater. 1 9 4401 4407 https://doi.org/10.1021/acsanm.8b01127

    Article  CAS  Google Scholar 

  21. Q Zhang W Zhu D Liang X Wu R Chen N Sun Y Li Y Zhou 2019 Appl. Surf. Sci. 487 77 81 https://doi.org/10.1016/j.apsusc.2019.05.060

    Article  CAS  Google Scholar 

  22. A Shayesteh Zeraati A Mende Anjaneyalu S Pawar A Abouelmagd U Sundararaj 2021 Polym. Eng. Sci. 61 4 959 970 https://doi.org/10.1002/pen.25591

    Article  CAS  Google Scholar 

  23. W Zhou Y Gong L Tu L Xu W Zhao J Cai Y Zhang A Zhou 2017 J. Alloys Compd. 693 1 8 https://doi.org/10.1016/j.jallcom.2016.09.178

    Article  CAS  Google Scholar 

  24. M Yuan B Li S Zhang R Rajagopalan M Lanagan 2020 ACS Appl. Polym. Mater. 2 3 1356 1368 https://doi.org/10.1021/acsapm.9b01224

    Article  CAS  Google Scholar 

  25. J Chen X Wang X Yu L Yao Z Duan Y Fan Y Jiang Y Zhou Z Pan 2018 J. Mater. Chem. C 6 2 271 279 https://doi.org/10.1039/C7TC04758D

    Article  CAS  Google Scholar 

  26. W Zhou F Zhang M Yuan B Li J Peng Y Lv H Cai X Liu Q Chen Z Dang 2019 J. Mater. Sci. Mater. Electron. 30 20 18350 18361 https://doi.org/10.1007/s10854-019-02189-w

    Article  CAS  Google Scholar 

  27. C Chen Y Xie J Wang Y Lan X Wei Z Zhang 2020 Appl. Surf. Sci. 535 147737

    Article  Google Scholar 

  28. J Bi Y Gu Z Zhang S Wang M Li Z Zhang 2016 Mater. Des. 89 933 940 https://doi.org/10.1016/j.matdes.2015.10.050

    Article  CAS  Google Scholar 

  29. Z Chen H Li G Xie K Yang 2018 RSC Adv. 8 1 1 9 https://doi.org/10.1039/C7RA12686G

    Article  Google Scholar 

  30. W Zhou T Li M Yuan B Li S Zhong Z Li X Liu J Zhou Y Wang HW Cai Z-M Dang 2021 Energy Storage Mater. 42 1 11

    Article  Google Scholar 

  31. H Luo C Ma X Zhou S Chen D Zhang 2017 Macromolecules 50 13 5132 5137 https://doi.org/10.1021/acs.macromol.7b00792

    Article  CAS  Google Scholar 

  32. H Luo X Zhou C Ellingford Y Zhang S Chen K Zhou D Zhang C Bowen C Wan 2019 Chem. Soc. Rev. 48 16 4424 4465 https://doi.org/10.1039/c9cs00043g

    Article  CAS  Google Scholar 

  33. B Wen H Yang Y Lin L Ma Y Qiu F Hu Y Zheng 2021 J. Mater. Chem. A. 9 6 3567 3575

    Article  CAS  Google Scholar 

  34. D Wang Y Bao J Zha J Zhao Z Dang G Hu 2012 ACS Appl. Mater. Interfaces 4 11 6273 6279 https://doi.org/10.1021/am3018652

    Article  CAS  Google Scholar 

  35. Y Zhang T Zhang L Liu Q Chi C Zhang Q Chen Y Cui X Wang Q Lei 2018 J. Phys. Chem. C 122 3 1500 1512 https://doi.org/10.1021/acs.jpcc.7b10838

    Article  CAS  Google Scholar 

  36. M Yang C Hu H Zhao P Haghi-Ashtiani D He Y Yang J Yuan J Bai 2018 Carbon 132 152 156 https://doi.org/10.1016/j.carbon.2018.02.047

    Article  CAS  Google Scholar 

  37. T Chen B Liu 2018 Mater. Lett. 210 165 168 https://doi.org/10.1016/j.matlet.2017.09.007

    Article  CAS  Google Scholar 

  38. R Singh F Singh V Agarwal R Mehra 2007 J. Phys. D Appl. Phys. 40 10 3090 https://doi.org/10.1088/0022-3727/40/10/012

    Article  CAS  Google Scholar 

  39. R Lu X Zhong S Shang S Wang M Tang 2018 R. Soc. Open Sci. 5 10 171691 https://doi.org/10.1098/rsos.171691

    Article  CAS  Google Scholar 

  40. A Azfar M Kasim I Lokman H Rafaie M Mastuli 2020 R. Soc. Open Sci. 7 2 191590 https://doi.org/10.1098/rsos.191590

    Article  CAS  Google Scholar 

  41. J Cao J Zhao X Zhao G Hu Z Dang 2013 J. Appl. Polym. Sci. 130 1 638 644 https://doi.org/10.1002/app.39186

    Article  CAS  Google Scholar 

  42. J Kuang W Cao 2013 J. Am. Ceram. Soc. 96 9 2877 2880 https://doi.org/10.1111/jace.12393

    Article  CAS  Google Scholar 

  43. J Xu T Yu D Han X Guan X Lei 2019 J. Wuhan Univ. Technol. Mater. Sci. Ed. 34 6 1279 1287 https://doi.org/10.1007/s11595-019-2190-z

    Article  CAS  Google Scholar 

  44. W Zhou L Xu L Jiang J Peng Y Gong X Liu H Cai G Wang 2017 J. Alloys Compd. 710 47 56 https://doi.org/10.1016/j.jallcom.2017.03.232

    Article  CAS  Google Scholar 

  45. Y Zhou H Luo S Chen X Han D Zhang 2019 IET Nanodielectr. 2 4 142 150 https://doi.org/10.1049/iet-nde.2019.0028

    Article  Google Scholar 

  46. B Li P Xidas K Triantafyllidis E Manias 2017 Appl. Phys. Lett. 111 8 082906 https://doi.org/10.1063/1.4996717

    Article  CAS  Google Scholar 

  47. B Li C Camilli P Xidas K Triantafyllidis E Manias 2017 MRS Adv. 2 6 363 368 https://doi.org/10.1557/adv.2016.638

    Article  CAS  Google Scholar 

  48. Y Tang W Xu S Niu Z Zhang Y Zhang Z Jiang 2021 J. Mater. Chem. A 9 16 10000 10011

    Article  CAS  Google Scholar 

  49. S Chen Y Cheng Q Xie B Xiao Z Wang J Liu G Wu 2019 Compos. Part A-Appl. Sci. Manuf. 120 84 94 https://doi.org/10.1016/j.compositesa.2019.02.024

    Article  CAS  Google Scholar 

  50. S Wang Q Li 2018 IET Nanodielectric. 1 2 80 91 https://doi.org/10.1049/iet-nde.2018.0003

    Article  Google Scholar 

  51. B Li P Xidas E Manias 2018 ACS Appl. Nano Mater. 1 7 3520 3530 https://doi.org/10.1021/acsanm.8b00671

    Article  CAS  Google Scholar 

  52. J Ren Q Li L Yan L Jia X Huang L Zhao Q Ran M Fu 2020 Mater. Des. 191 108663 https://doi.org/10.1016/j.matdes.2020.108663

    Article  CAS  Google Scholar 

  53. W Zhou Y Zhang J Wang H Li W Xu B Li L Chen Q Wang 2020 ACS Appl. Mater. Interfaces 12 41 46767 46778 https://doi.org/10.1021/acsami.0c11543

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 51937007, 51577154), and has received support from the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DC, WZ, TL and JZ. Characterization and related discussion were performed by MY, BL, JL, DL, GW, HZ. Funding acquisition and Project administration was performed by WZ. The first draft of the manuscript was written by DC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wenying Zhou, Mengxue Yuan or Hongfang Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Zhou, W., Yuan, M. et al. Polymer composites filled with core–shell structured nanofillers: effects of shell thickness on dielectric and thermal properties of composites. J Mater Sci: Mater Electron 33, 5174–5189 (2022). https://doi.org/10.1007/s10854-022-07705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07705-z

Navigation