Skip to main content
Log in

Ultrasonically induced in situ polymerization of PANI-SWCNT nanocomposites for electromagnetic shielding applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic interference (EMI) shielding has potential importance due to rapid growth in electronic technology. In recent days, carbon nanomaterials and conducting polymer nanocomposites grab much attention for EMI shielding applications. Nanocomposites of polyaniline (PANI) and single-walled carbon nanotubes (SWCNTs) were synthesized by ultrasonically induced in situ polymerization technique. The content of the SWCNT filler is varied as 1, 2, 3, 4 and 5 wt%. Fourier transform infrared spectroscopy was used to quantitatively analyse the functional groups of nanocomposites. Raman spectra revealed good compatibility between PANI and SWCNTs phases. The surface morphology of nanocomposites was analysed by field emission scanning electron microscope. The microwave absorption ability of the nanocomposites was estimated by determining shielding effectiveness in the range of 8.2–12.4 GHz (X-band). The total shielding effectiveness was found to increase with increase of SWCNT phase in PANI matrix and the maximum value of − 32.80 dB at 11 GHz with 99.999% absorption was obtained for 3 wt% of SWCNT sample. Dynamic mechanical properties were studied as a function of temperature. The complex permittivity and electrical conductivity of PANI-SWCNT nanocomposites are also studied. The complex permittivity (ɛ′ and ɛ″) and AC conductivity were found to be higher in PANI-SWCNTs nanocomposites as compared to the PANI. The increasing behaviour has been attributed to the good interaction between SWCNTs and PANI molecular chains. The present results reveal that the current sample materials are suitable for shielding the devices from EMI in X-band frequency region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Curr. Appl. Phys. 8, 391 (2008)

    Google Scholar 

  2. H. Khatoon, S. Ahmad, J. Ind. Eng. Chem. 53, 1 (2017)

    CAS  Google Scholar 

  3. Z. Min, H. Yang, F. Chen, T. Kuang, Mater. Lett. 230, 157 (2018)

    CAS  Google Scholar 

  4. R.H. Fernando, ACS Symposium Series (American Chemical Society, Washington DC, 2009), pp. 2–21

    Google Scholar 

  5. S.P. Gairola, V. Verma, L. Kumar, M.A. Dar, S. Annapoorni, R.K. Kotnala, Synth. Met. 160, 2315 (2010)

    CAS  Google Scholar 

  6. B. Zhang, Y. Du, P. Zhang, H. Zhao, L. Kang, X. Han, P. Xu, J. Appl. Polym. Sci. 130, 1909 (2013)

    CAS  Google Scholar 

  7. Y. Zhang, K. Ruan, X. Shi, H. Qiu, Y. Pan, Y. Yan, J. Gu, Carbon 175, 271 (2021)

    CAS  Google Scholar 

  8. P. Song, B. Liu, H. Qiu, X. Shi, D. Cao, J. Gu, Compos. Commun. 24, 100653 (2021)

    Google Scholar 

  9. J. Zhao, J. Zhang, L. Wang, S. Lyu, W. Ye, B. Bin Xu, H. Qiu, L. Chen, J. Gu, Compos. Part A 129, 105714 (2020)

    CAS  Google Scholar 

  10. P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu, Z. Ma, Y. Guo, J. Gu, Nano-Micro Lett. 13, 91 (2021)

    CAS  Google Scholar 

  11. L. Wang, X. Shi, J. Zhang, Y. Zhang, J. Gu, J. Mater. Sci. Technol. 52, 119 (2020)

    CAS  Google Scholar 

  12. S. Bhadra, D. Khastgir, N. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    CAS  Google Scholar 

  13. Y. Zhang, L. Wang, J. Zhang, P. Song, Z. Xiao, C. Liang, H. Qiu, J. Kong, J. Gu, Compos. Sci. Technol. 183, 107833 (2019)

    CAS  Google Scholar 

  14. Y. Luo, J.S. Do, Biosens. Bioelectron. 20, 15 (2004)

    CAS  Google Scholar 

  15. N. Özcan, H. Medetalibeyoglu, O. Akyıldırım, N. Atar, M.L. Yola, Mater. Today Commun. 23, 101097 (2020)

    Google Scholar 

  16. J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, L. Chen, J. Gu, Compos. Commun. 22, 100486 (2020)

    Google Scholar 

  17. P.R. Bandaru, J. Nanosci. Nanotechnol. 7, 1 (2006)

    Google Scholar 

  18. L. Wang, P. Song, C. Lin, J. Kong, J. Gu, Research 2020, 4093732 (2020)

    CAS  Google Scholar 

  19. L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao, J. Gu, SusMat 1, 413 (2021)

    Google Scholar 

  20. T. Ma, H. Ma, K. Ruan, X. Shi, H. Qiu, S. Gao, J. Gu, Chin. J. Polym. Sci. (2022). https://doi.org/10.1007/s10118-022-2673-9

    Article  Google Scholar 

  21. X. Zhang, J. An, C. Ji, Y. Liu, J. Mater. Sci. 2021, 1 (2021)

    Google Scholar 

  22. M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)

    CAS  Google Scholar 

  23. E. Kymakis, G.A.J. Amaratunga, Appl. Phys. Lett. 80, 112 (2002)

    CAS  Google Scholar 

  24. I. Alexandrou, E. Kymakis, G.A.J. Amaratunga, Appl. Phys. Lett. 80, 1435 (2002)

    CAS  Google Scholar 

  25. M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, D.J. Fray, A.H. Windle, Adv. Mater. 14, 382 (2002)

    CAS  Google Scholar 

  26. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Adv. Mater. 11, 1281 (1999)

    CAS  Google Scholar 

  27. N. Özcan, C. Karaman, N. Atar, O. Karaman, M.L. Yola, ECS J. Solid State Sci. Technol. 9, 121010 (2020)

    Google Scholar 

  28. M.L. Yola, N. Atar, Anal. Bioanal. Chem. 413, 2481 (2021)

    CAS  Google Scholar 

  29. M.B. Armand, Annu. Rev. Mater. Sci. 16, 245 (1986)

    CAS  Google Scholar 

  30. M.A. Ratner, D.F. Shriver, Chem. Rev. 88, 109 (1988)

    CAS  Google Scholar 

  31. H. Eisazadeh, G. Spinks, G.G. Wallace, Mater. Forum 17, 241 (1994)

    Google Scholar 

  32. E. Falcão, W. de Azevedo, Synth. Met. 128, 149 (2002)

    Google Scholar 

  33. V. Misoska, J. Ding, J.M. Davey, W.E. Price, S.F. Ralph, G.G. Wallace, Polymer 42, 8571 (2001)

    CAS  Google Scholar 

  34. S. Benabderrahmane, S. Bousalem, C. Mangeney, A. Azioune, M. Joseph Vaulay, M.M. Chehimi, Polymer 46, 1339 (2005)

    CAS  Google Scholar 

  35. M. Saboktakin, A.M. Maharramov, M.A. Ramazanov, J. Non-Oxide Glasses 1, 211 (2009)

    Google Scholar 

  36. H. Karimi-Maleh, F. Tahernejad-Javazmi, N. Atar, M.L. Yola, V.K. Gupta, A.A. Ensafi, Ind. Eng. Chem. Res. 54, 3634 (2015)

    CAS  Google Scholar 

  37. B. Ertan, T. Eren, I. Ermiş, H. Saral, N. Atar, M.L. Yola, J. Colloid Interface Sci. 470, 14 (2016)

    CAS  Google Scholar 

  38. M.L. Yola, N. Atar, N. Özcan, Nanoscale 13, 4660 (2021)

    CAS  Google Scholar 

  39. L.H. Thompson, L.K. Doraiswamy, Sonochemistry science and engineering. Ind. Eng. Chem. Res. 38, 1215 (1999)

    CAS  Google Scholar 

  40. A. Kaboorani, B. Riedl, P. Blanchet, J. Nanomater. 2013, 3 (2013)

    Google Scholar 

  41. W.T. Richards, A.L. Loomis, J. Am. Chem. Soc. 49, 3086 (1927)

    CAS  Google Scholar 

  42. J.L. Capelo-Martínez, Ultrasound in Chemistry: Analytical Applications (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  43. P.H. Matter, U.S. Ozkan, Catal. Lett. 109, 115 (2006)

    CAS  Google Scholar 

  44. S. Xuan, Y.X.J. Wang, J.C. Yu, K.C.F. Leung, Langmuir 25, 11835 (2009)

    CAS  Google Scholar 

  45. N. Gull, S.M. Khan, A. Islam, S. Zia, M. Shafiq, A. Sabir, M.A. Munawar, M.T.Z. Butt, T. Jamil, Mater. Chem. Phys. 172, 39 (2016)

    CAS  Google Scholar 

  46. R. Ravindren, S. Mondal, K. Nath, N.C. Das, Compos. A 118, 75 (2019)

    CAS  Google Scholar 

  47. L. Thi Mai Hoa, Diamond Relat. Mater. 89, 43 (2018)

    CAS  Google Scholar 

  48. P. Kar, A. Choudhury, Sens. Actuators B 183, 25 (2013)

    CAS  Google Scholar 

  49. G.M. do Nascimento, T.B. Silva, P. Corio, M.S. Dresselhaus, J. Raman Spectrosc. 41, 1587 (2010)

    Google Scholar 

  50. X. Bin Yan, Z.J. Han, Y. Yang, B.K. Tay, J. Phys. Chem. C 111, 4125 (2007)

    Google Scholar 

  51. S.G. Bachhav, D.R. Patil, Am. J. Mater. Sci. 5, 90 (2015)

    Google Scholar 

  52. R.V. Salvatierra, M.M. Oliveira, A.J.G. Zarbin, Chem. Mater. 22, 5222 (2010)

    CAS  Google Scholar 

  53. S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, ACS Appl. Mater. Interfaces 5, 4712 (2013)

    CAS  Google Scholar 

  54. C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu, J. Gu, Nano-Micro Lett. 13, 181 (2021)

    CAS  Google Scholar 

  55. Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang, Z. Zhang, Carbon 96, 768 (2016)

    CAS  Google Scholar 

  56. H. Li, X. Lu, D. Yuan, J. Sun, F. Erden, F. Wang, C. He, J. Mater. Chem. C 5, 8694 (2017)

    CAS  Google Scholar 

  57. A. Joshi, A. Bajaj, R. Singh, P.S. Alegaonkar, K. Balasubramanian, S. Datar, Nanotechnology 24, 455705 (2013)

    Google Scholar 

  58. E.G. Barathi Dassan, A. Anjang Ab Rahman, M.S.Z. Abidin, H.M. Akil, Nanotechnol. Rev. 9, 768 (2020)

    Google Scholar 

  59. A. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Google Scholar 

  60. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33 (1974)

    Google Scholar 

  61. H. Qiu, J. Wang, S. Qi, Z. He, X. Fan, Y. Dong, J. Mater. Sci. 26, 564 (2015)

    CAS  Google Scholar 

  62. H. Zeyada, F. El-Taweel, M.M. El-Nahass, M.M. El-Shabaan, Chin. Phys. B 25, 077701 (2016)

    Google Scholar 

  63. A. Kumar, V. Kumar, M. Kumar, K. Awasthi, Polym. Compos. 39, 3858 (2018)

    CAS  Google Scholar 

  64. N.I. Ibrahim, A.S. Wasfi, Synth. Met. 250, 49 (2019)

    CAS  Google Scholar 

  65. S. Kumar Sahu, N. Dhar Badgayan, S. Samanta, P.S. Rama Sreekanth, Mater. Sci. Forum 917, 27 (2018)

    Google Scholar 

  66. S.C. Her, K.Y. Lin, J. Appl. Biomater. Funct. Mater. 15, S13 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors profusely thank Defence R&D Organisation (DRDO) for sponsoring this project [Grant No: ERIP/ER/1504754/M/01/1719], and also grateful to UGC-NRC, School of Physics, the University of Hyderabad (UoH) for providing the FESEM facility. Authors are thankful to University of Hyderabad (UoH) for providing experimental facilities for studying mechanical properties.

Author information

Authors and Affiliations

Authors

Contributions

PR: Methodology, data curation, validation, analysis, writing draft, review and editing. GNR: Conceptualization, supervision, analysis, writing draft, review and editing. SUK: Supervision and resources. AJ: Resources, data curation and software. KCJR: Supervision, review and resources.

Corresponding authors

Correspondence to G. Neeraja Rani or K. C. James Raju.

Ethics declarations

Conflict of interest

The authors proclaim that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, P., Rani, G.N., Kumar, S.U. et al. Ultrasonically induced in situ polymerization of PANI-SWCNT nanocomposites for electromagnetic shielding applications. J Mater Sci: Mater Electron 33, 5138–5148 (2022). https://doi.org/10.1007/s10854-022-07702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07702-2

Navigation