Skip to main content
Log in

Performance optimization of silicon-doped titanium dioxide and multiwalled carbon nanotubes tricomposite nanostructures for electrical and optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Combination nanostructures of metal, semiconductor oxides and carbon materials pursued well in optical and electrical devices. Here we report an experimental study on fabrication and characterization of tricomposite nanostructure of silicon-doped titanium dioxide [Si(x)TiO2(1-x)] and multiwalled carbon nanotubes (MWCNTs). The tricomposite of varying concentration (x) of silicon in TiO2 [Si(x)TiO2(1-x)] while keeping the concentration of MWCNTs constant were prepared using conventional chemical method. The concentration of Si in TiO2 was decided by Maxwell Garnett model using volume filling factor 'f' (0 ≤ f ≤ 1)]) of Si in TiO2. It has been shown that fabricated tricomposite nanostructure possesses typical nanoflower shape. The UV–Vis spectrum is found to be such that as the value of ‘f’ increases, spectrum shifted towards red and hence bandgap increases. This bandgap shifting was also confirmed using photoluminescence measurements. All the prepared MWCNTs:Si(x)TiO2(1-x) tricomposite nanostructures were then employed for cyclic voltammetry (CV) as well as for optical applications. The optimize values of specific capacitance, quantum efficiency, responsivity and detectivity, i.e. 3.9 × 103 F/g, 0.18 A/W, 27 AW−1 nm−1 and 3.75 × 1013 Jones respectively are found to be unrivaled in comparison to the reported ones. The fabricated device also possesses additional advantages like immunity to electromagnetic interference, low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Wrede, H. Tian, Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion. Phys. Chem. Chem. Phys. 22, 13850–13861 (2020)

    Article  CAS  Google Scholar 

  2. U. Shaislamov, H. Kim, J.M. Yang, B.L. Yang, CuO/ZnO/TiO2 photocathodes for a self-sustaining photocell: Efficient solar energy conversion without external bias and under visible light. Int. J. Hydrogen Energy 45, 6148–6158 (2020)

    Article  CAS  Google Scholar 

  3. G. Yu, X. Zhang, Y. Sang, Z. Wang, X. Hu, X. Xu, J.J. Wang, Synthesis and characterization of a coaxial carbon-TiO2 nanotube arrays film with spectral response from UV to NIR and its application in solar energy conversion. Electrochim. Acta 301, 325–331 (2019)

    Article  CAS  Google Scholar 

  4. B. Boro, B. Gogoi, B.M. Rajbongshi, A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018)

    Article  CAS  Google Scholar 

  5. M.C. Wu, K.C. Hsiao, Y.H. Chang, K. Kordás, Core-Shell Heterostructures of Rutile and Anatase TiO2 Nanofibers for Photocatalytic Solar Energy Conversion. ACS Appl. Nano Mater. 2, 1970–1979 (2019)

    Article  CAS  Google Scholar 

  6. M.M. Abutalib, A. Rajeh, Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications. Polym. Test. 91, 1–10 (2020)

    Article  Google Scholar 

  7. M. Kapilashrami, Y. Zhang, Y.S. Liu, A. Hagfeldt, J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014)

    Article  CAS  Google Scholar 

  8. R.S. Chen, W.C. Wang, M.L. Lu, Y.F. Chen, H.C. Lin, K.H. Chen, L.C. Chen, Anomalous quantum efficiency for photoconduction and its power dependence in metal oxide semiconductor nanowires. Nanoscale 5, 6867–6873 (2013)

    Article  CAS  Google Scholar 

  9. R.S. Chen, W.C. Wang, C.H. Chan, M.L. Lu, Y.F. Chen, H.C. Lin, L.C. Chen, Photoconduction efficiencies of metal oxide semiconductor nanowires: The material’s inherent properties. Appl. Phys. Lett. 103, 223107 (2013)

    Article  Google Scholar 

  10. R.S. Chen, C.A. Chen, H.Y. Tsai, W.C. Wang, Y.S. Huang, Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain. J. Phys. Chem. C 116, 4267–4272 (2012)

    Article  CAS  Google Scholar 

  11. A. Chakraborty, R. Pizzoferrato, A. Agresti, F. De Matteis, A. Orsini, P.G. Medaglia, Wet-chemical synthesis of ZnO nanowires on low-temperature photo-activated ZnO-rGO composite thin film with enhanced photoconduction. J. Electron. Mater. 47, 5863–5869 (2018)

    Article  CAS  Google Scholar 

  12. A. Rajeh, M.H. Ragab, M.M. Abutalib, Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications. J. Mol. Struct. 1217, 1–36 (2020)

    Article  Google Scholar 

  13. W. Xue, D. Huang, X. Wen, S. Chen, M. Cheng, R. Deng, X. Liu, Silver-based semiconductor Z-scheme photocatalytic systems for environmental purification. J. Hazard. Mater. 390, 122128 (2020)

    Article  CAS  Google Scholar 

  14. H.F. Etefa, T. Imae, M. Yanagida, Enhanced photosensitization by carbon dots Co-adsorbing with dye on p-type semiconductor (Nickel Oxide) solar cells. ACS Appl. Mater. Interf. 12, 18596–18608 (2020)

    Article  CAS  Google Scholar 

  15. F.A. Hezam, A. Rajeh, O. Nur, M.A. Mustafa, Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Physica B 596, 1–44 (2020)

    Article  Google Scholar 

  16. M.M. Abutalib, A. Rajeh, Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 93, 1–11 (2021)

    Article  Google Scholar 

  17. Q.A. Aluslami, Structural, dielectric, and magnetic studies based on MWCNTs/NiFe2O4/ZnO nanoparticles dispersed in polymer PVA/PEO for electromagnetic applications. J Mater Sci. Mater Electron 32, 2906–2924 (2021)

    Article  Google Scholar 

  18. Y. Lv, S. Duan, R. Wang, Structure design, controllable synthesis, and application of metal-semiconductor heterostructure nanoparticles. Prog. Nat. Sci. Mater. Int. 30, 1–12 (2020)

    Article  CAS  Google Scholar 

  19. Q.A. Alsulami, A. Rajeh, M.A. Mannaa, S.M. Albukhari, D.F. Baamer, Preparation of highly efficient sunlight driven photodegradation of some organic pollutants and H2 evolution over rGO/FeVO4 nanocomposites. Int. J. Hydrogen Energy 46, 27349–27363 (2021)

    Article  CAS  Google Scholar 

  20. Q.A. Alsulami, A. Rajeh, Synthesis of the SWCNTs/TiO2 nanostructure and its effect study on the thermal, optical, and conductivity properties of the CMC/PEO blend. Results Phys. 28, 1–13 (2021)

    Article  Google Scholar 

  21. A. Mathur, H. Fan, V. Maheshwari, Organolead halide perovskites beyond solar cells: self-powered devices and the associated progress and challenges. Mater. Adv. 2, 5274–5299 (2021)

    Article  CAS  Google Scholar 

  22. A. Dutta, A. Medda, R. Bera, K. Sarkar, S. Sain, P. Kumar, A. Patra, Hybrid nanostructures of 2D CdSe nanoplatelets for high-performance photodetector using charge transfer process. ACS Appl. Nano Mater. 3, 4717–4727 (2020)

    Article  CAS  Google Scholar 

  23. Y. Shiwei et al., Environmentally safe and porous MS@ TiO2@ PPy monoliths with superior visible-light photocatalytic properties for rapid oil–water separation and water purification. ACS Sustain. Chem. Eng. 8, 5347–5359 (2020)

    Article  Google Scholar 

  24. B. Prabhu, A. ValanArasu, Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems. Renew. Energy 152, 358–367 (2020)

    Article  Google Scholar 

  25. K.Z. Zhu et al., Mesoporous TiO2 spheres as advanced anodes for low-cost, safe, and high-areal-capacity lithium-ion full batteries. ACS Appl. Nano Mater. 3, 1019–1027 (2020)

    Article  CAS  Google Scholar 

  26. J. Nzabahimana et al., Top-down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: mechanical milling and etching. Chemsuschem 13, 1923–1946 (2020)

    Article  CAS  Google Scholar 

  27. R.T. Haasch, P. Daniel, Si-based materials for lithium-ion batteries II. Surface-modified Si/C/polyethylene glycol powder. Surf. Sci. Spectra 27, 0140091–0140092 (2020)

    Google Scholar 

  28. F. Tianyang et al., A Si-based InP/InGaAs nanowire array photodetector operating at telecommunication wavelength. Photonics Nanostruct. Fundam. Appl. 40, 1–11 (2020)

    Google Scholar 

  29. X. Jianxiang et al., SnS2/Si vertical heterostructure for high-performance photodetection with large photocurrent and fast speed. Appl. Surf. Sci. 506, 144671–1446711 (2020)

    Article  Google Scholar 

  30. D. Zhang, J. Zhang, M. Pan, Y. Wang, T. Sun, Necklace-like C-ZIF-8@ MWCNTs fabricated by electrochemical deposition towards enhanced supercapacitor. J. Alloy. Compd. 853, 1573681–1573689 (2021)

    Article  Google Scholar 

  31. H.H. Gullu, D.E. Yildiz, A. Kocyigit, M. Yıldırım, Electrical properties of Al/PCBM: ZnO/p-Si heterojunction for photodiode application. J. Alloys Compd. 827, 154279 (2020)

    Article  CAS  Google Scholar 

  32. P. Bhattacharya, C.K. Das, S.S. Kalra, Graphene and MWCNT: potential candidate for microwave absorbing materials. J. Mater. Sci. Res. 1, 126 (2012)

    CAS  Google Scholar 

  33. E. Ivanov, R. Kotsilkova, H. Xia, Y. Chen, R.K. Donato, K. Donato, V. Angelov, PLA/graphene/MWCNT composites with improved electrical and thermal properties suitable for FDM 3D printing applications. Appl. Sci. 9, 1209 (2019)

    Article  CAS  Google Scholar 

  34. M. Abutalib, A. Rajeh, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J. Organomet. Chem. 918, 1–36 (2020)

    Article  Google Scholar 

  35. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4, 1855–1865 (2011)

    Article  CAS  Google Scholar 

  36. Q. Yu, P. Weng, L. Han, X. Yin, Z. Chen, X. Hu, H. Wang, Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose 26, 7523–7535 (2019)

    Article  CAS  Google Scholar 

  37. A.T. Chidembo, K.I. Ozoemena, B.O. Agboola, V. Gupta, G.G. Wildgoose, R.G. Compton, Nickel (II) tetra-aminophthalocyanine modified MWCNTs as potential nanocomposite materials for the development of supercapacitors. Energy Environ. Sci. 3, 228–236 (2010)

    Article  CAS  Google Scholar 

  38. S. Huang, S. Song, R. Zhang, T. Wen, X. Wang, S. Yu, X. Wang, Construction of layered double hydroxides/hollow carbon microsphere composites and its applications for mutual removal of Pb (II) and humic acid from aqueous solutions. ACS Sustain. Chem. Eng. 5, 11268–11279 (2017)

    Article  CAS  Google Scholar 

  39. J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, J. Luan, J. Chen, Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces. 4, 5749–5760 (2012)

    Article  CAS  Google Scholar 

  40. H. Ferhati, F. Djeffal, N. Martin, Highly improved responsivity of self-powered UV–Visible photodetector based on TiO2/Ag/TiO2 multilayer deposited by GLAD technique: Effects of oriented columns and nano-sculptured surface. Appl. Surf. Sci. 529, 147069 (2020)

    Article  CAS  Google Scholar 

  41. M. Gong, Q. Liu, R. Goul, D. Ewing, M. Casper, A. Stramel, J.Z. Wu, Printable nanocomposite FeS2–PbS nanocrystals/graphene heterojunction photodetectors for broadband photodetection. ACS Appl. Mater. Interfaces 9, 27801–27808 (2017)

    Article  CAS  Google Scholar 

  42. Z. Sun, H. Chang, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8, 4133–4156 (2014)

    Article  CAS  Google Scholar 

  43. Y. Gao, H. Cansizoglu, K.G. Polat, S. Ghandiparsi, A. Kaya, H.H. Mamtaz, M.S. Islam, Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photonics 11, 301–308 (2017)

    Article  CAS  Google Scholar 

  44. C. Lan, R. Dong, Z. Zhou, L. Shu, D. Li, S. Yip, J.C. Ho, Large-scale synthesis of freestanding layer-structured PbI2 and MAPbI3 nanosheets for high-performance photodetection. Adv. Mater. 29, 1702759 (2017)

    Article  Google Scholar 

  45. S.K. Singh, P. Hazra, S. Tripathi, P. Chakrabarti, Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity. Superlattices Microstruct. 91, 62–69 (2016)

    Article  CAS  Google Scholar 

  46. M.S. Akhtar, A. Umar, S. Sood, I. Jung, H.H. Hegazy, H. Algarni, Rapid growth of TiO2 nanoflowers via low-temperature solution process: photovoltaic and sensing applications. Materials 12, 566 (2019)

    Article  CAS  Google Scholar 

  47. J. Di, S. Li, Z. Zhao, Y. Huang, Y.A. Jia, H. Zheng, Biomimetic CNT@ TiO2 composite with enhanced photocatalytic properties. Chem. Eng. J. 281, 60–68 (2015)

    Article  CAS  Google Scholar 

  48. R. Rupin, Evaluation of extended Maxwell-Garnett theories Opt. Comm. 182, 273–282 (2000)

    Google Scholar 

  49. A.H.P. Oliveira, H.P. Oliveira, Carbon nanotube/polypyrrole nanofibers core-shell composites decorated with titanium dioxide nanoparticles for supercapacitor electrodes. J. Power Sources 268, 45–49 (2014)

    Article  Google Scholar 

  50. R. Oraon, A.D. Adhikari, S.K. Tiwari, G.C. Nayak, Nanoclay-based hierarchical interconnected mesoporous CNT/PPy electrode with improved specific capacitance for high performance supercapacitors. Dalton Trans. 45, 9113–9126 (2016)

    Article  CAS  Google Scholar 

  51. Y. Zhu, K. Shi, I. Zhitomirsky, Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance. J. Power Sources 268, 233–239 (2014)

    Article  CAS  Google Scholar 

  52. L. Jiang, D. Luo, Q. Zhang, S. Ma, G. Wan, X. Lu, Z. Ren, Electrochemical performance of free-standing and flexible graphene and TiO2 composites with different conductive polymers as electrodes for supercapacitors. Chem. A Eur. J. 25, 7903–7911 (2019)

    Article  CAS  Google Scholar 

  53. P.M. Anjana, M.R. Bindhu, R.B. Rakhi, Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage. Mater. Sci. Energy Technol. 2, 389–395 (2019)

    Google Scholar 

  54. Y. Cheng, Y. Zhang, C. Meng, Template fabrication of amorphous Co2SiO4 nanobelts/graphene oxide composites with enhanced electrochemical performances for hybrid supercapacitors. ACS Appl. Energy Mater. 2, 3830–3839 (2019)

    Article  CAS  Google Scholar 

  55. S.I. Yun, S.H. Kim, D.W. Kim, Y.A. Kim, B.H. Kim, Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon 149, 637–645 (2019)

    Article  CAS  Google Scholar 

  56. S. Bansal, K. Prakash, K. Sharma, N. Sardana, S. Kumar, N. Gupta, A.K. Singh, A highly efficient bilayer graphene/ZnO/silicon nanowire based heterojunction photodetector with broadband spectral response. Nanotechnology 31, 405205 (2020)

    Article  Google Scholar 

  57. D. Liu, H.J. Li, J. Gao, S. Zhao, Y. Zhu, P. Wang, D. Wang, A. Chen, X. Wang, J. Yang, High-Performance Ultraviolet Photodetector Based on Graphene Quantum Dots Decorated ZnO Nanorods/GaN Film Isotype Heterojunctions. Nanoscale Res. Lett. 13, 1–9 (2018)

    Article  Google Scholar 

  58. L.B. Luo, H. Hu, X.H. Wang, R. Lu, Y.F. Zou, Y.Q. Yu, F.X. Liang, A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 3, 4723–4728 (2015)

    Article  CAS  Google Scholar 

  59. Z. Bai, J. Liu, F. Liu, Y. Zhang, Enhanced photoresponse performance of self-powered UV–visible photodetectors based on ZnO/Cu2O/electrolyte heterojunctions via graphene incorporation. J. Alloys Compd. 726, 803–809 (2017)

    Article  CAS  Google Scholar 

  60. T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010)

    Article  CAS  Google Scholar 

  61. F. Xia, T. Mueller, Y. Lin, A.V. Garcia, P. Avouris, Ultrafast graphene photodetector. Nat. Nanotechnol. 4, 839–843 (2009)

    Article  CAS  Google Scholar 

  62. M.A. Hezma, A. Rajeh, M.A. Mohammed, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite, Colloids and Surfaces A: Physicochem. Eng. Aspects 581, 1–28 (2019)

    Article  Google Scholar 

  63. L. Zheng, F. Teng, Z. Zhang, B. Zhao, X. Fang, Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO 2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J. Mater. Chem. C 4, 10032–10039 (2016)

    Article  CAS  Google Scholar 

  64. F. Cao, X. Ji, Enhanced self-powered UV sensing performance of ZnO/Au/Al 2 O 3 photodetector with the decoration of Au nanoparticles. J. Mater. Sci.: Mater. Electron. 31, 2657–2665 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

Rana Tabassum is thankful to Department of Science and Technology (India) for INSPIRE faculty scheme with Project No. [DST/INSPIRE/04/2017/000141]

Author information

Authors and Affiliations

Authors

Contributions

RT is corresponding author. SR and RT has performed all the experiments (sample preparation and characterization) and prepared manuscript. JB has helped greatly in the explanation of experimental results as well as in overall preparation of manuscript. FA and AKH supported the work.

Corresponding author

Correspondence to Rana Tabassum.

Ethics declarations

Conflict of interest

This article does not contain any studies involving human or animal participants performed by any of the author. There is no conflict of interest among the contributing authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S., Ahmad, F., Bansal, J. et al. Performance optimization of silicon-doped titanium dioxide and multiwalled carbon nanotubes tricomposite nanostructures for electrical and optical applications. J Mater Sci: Mater Electron 33, 5105–5126 (2022). https://doi.org/10.1007/s10854-022-07700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07700-4

Navigation