Skip to main content
Log in

TiO2–CeO2 composite coatings for photocatalytic degradation of chloropesticide and organic dye

  • [
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spray pyrolysis was used to deposit CeO2–TiO2 coatings on stainless steel substrates. The addition of CeO2 to TiO2 changes morphology of the coatings, causing the surface to become laced and some CeO2 ions are incorporated into TiO2 crystal lattice. Part of CeO2 is highly dispersed on the surface of TiO2. The XPS showed the simultaneous existence of Ce4+ and Ce3+ on coating surface. As the CeO2 content in composites increases from 0.5 to 20%, the band gap decreases from 3.16 to 2.88 eV, respectively. The photoactivities in the degradation of methyl orange and lindane were significantly influenced by the content of Ce in composite. For methyl orange photodegradation, the highest activity had coating with CeO2 content of 2 wt%. In contrast, the activity of coatings in lindane photodegradation gradually decreases as the CeO2 content increases. However, efficiency of CeO2–TiO2 coatings remained satisfactory for application in process of lindane degradation. Lindane conversion at 6 h of irradiation is in the range from 88% for pure TiO2 to 60% for CeO2–TiO2 coating with CeO2 content of 20 wt%. Photodegradation of lindane was enhanced on pure TiO2 sites, while methyl orange degradation is highest on composite CeO2/TiO2 species with CeO2 content of 2 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data and material were available.

References

  1. A. Singh, N. Dhiman, A.K. Kar, D. Singh, M.P. Purohit, D. Ghosh, S. Patnaik, Advances in controlled release pesticide formulations: prospects to safer integrated pest management and sustainable agriculture. J. Hazard. Mater. 385, 121525 (2020)

    Article  CAS  Google Scholar 

  2. J.J. Rueda-Marquez, I. Levchuk, P. Fernandez Ibanez, M. Sillanpaa, A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 258, 120694 (2020)

    Article  CAS  Google Scholar 

  3. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B. 125, 331–349 (2012)

    Article  CAS  Google Scholar 

  4. I. Ahmad, S. Shukrullah, M.Y. Naz, M.A. Rasheed, M. Ahmad, E. Ahmed, M.S. Akhtar, N.R. Khalid, A. Hussain, S. Khalid, Boosted hydrogen evolution activity from Sr doped ZnO/CNTs nanocomposite as visible light driven photocatalyst. Int. J. Hydrogen Energy 46, 26711–26724 (2021)

    Article  CAS  Google Scholar 

  5. I. Ahmad, S. Shukrullah, M.Y. Naz, M. Ahmad, E. Ahmed, M.S. Akhtar, S.U. Rehman, M.M. Makhlouf, Efficient hydrogen evolution by liquid phase plasma irradiation over Sn doped ZnO/CNTs photocatalyst. Int. J. Hydrogen Energy 46, 30019–30030 (2021)

    Article  CAS  Google Scholar 

  6. L. Hromadko, M. Motola, V. Cicmancova, R. Bulanek, J. Macak, Facile synthesis of WO3 fibers via centrifugal spinning as an efficient UV and VIS-light-driven photocatalyst. Ceram. Int. 47, 35361–35365 (2021)

    Article  CAS  Google Scholar 

  7. Y. Yuan, R. Guo, L. Hong, X. Ji, Z. Lin, Z. Li, W. Pan, A review of metal oxide-based Z-scheme heterojunction photocatalysts: actualities and developments. Mater. Today Energy 21, 100829 (2021)

    Article  CAS  Google Scholar 

  8. S. Bera, D. Won, S.B. Rawal, H.J. Kang, W.I. Lee, Design of visible-light photocatalysts by coupling of inorganic semiconductors. Catal. Today 335, 3–19 (2019)

    Article  CAS  Google Scholar 

  9. A. Fernandez, G. Lassaletta, V.M. Jimenez, A. Justo, A.R. Gonzalez-Elipe, J.M. Herrmann, H. Tahiri, Y. Ait-Ichou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B. 7, 49–63 (1995)

    Article  CAS  Google Scholar 

  10. J. Dostanic, B. Grbic, N. Radic, P. Stefanov, Z. Saponjic, J. Buha, D. Mijin, Photodegradation of an azo pyridone dye using TiO2 films prepared by the spray pyrolysis method. Chem. Eng. J. 180, 57–65 (2012)

    Article  CAS  Google Scholar 

  11. G. Ali, M. Maqbool, Field emission properties of TiO2 nanotubes fabricated on Ti wire. Mater. Chem. Phys. 233, 21–26 (2019)

    Article  CAS  Google Scholar 

  12. M.D. Hernandez-Alonso, I. Tejedor-Tejedor, J.M. Coronado, J. Soria, M.A. Anderson, Sol–gel preparation of TiO2–ZrO2 thin films supported on glass rings: influence of phase composition on photocatalytic activity. Thin Solid Films 502, 125–131 (2006)

    Article  CAS  Google Scholar 

  13. Z. Ding, X. Hu, P.L. Yue, G.Q. Lu, P.F. Greenfield, Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today 68, 173–182 (2001)

    Article  Google Scholar 

  14. S. Varnagiris, D. Girdzevicius, M. Urbonavicius, D. Milcius, Incorporation of SiO2 and TiO2 additives into expanded polystyrene foam using physical vapour deposition technique. Energy Procedia 128, 525–532 (2017)

    Article  CAS  Google Scholar 

  15. B. Grbić, N. Radić, S. Stojadinović, R. Vasilić, Z.D. Mitrović, Z. Šaponjić, P. Stefanov, TiO2/WO3 photocatalytic composite coatings prepared by spray pyrolysis. Surf. Coat. Technol. 258, 763–771 (2014)

    Article  Google Scholar 

  16. I. OjaAcik, A. Junolainen, V. Mikli, M. Danilson, M. Krunks, Growth of ultra-thin TiO2 films by spray pyrolysis on different substrates. Appl. Surf. Sci. 256, 1391–1394 (2009)

    Article  CAS  Google Scholar 

  17. G. Žerjav, G. Scandura, C. Garlisi, G. Palmisano, A. Pintar, Sputtered vs. sol-gel TiO2-doped films: characterization and assessment of aqueous bisphenol A oxidation under UV and visible light radiation. Catal. Today 357, 380–391 (2020)

    Article  Google Scholar 

  18. S. Stojadinovic, N. Tadic, N. Radic, B. Grbic, R. Vasilic, TiO2/SnO2 photocatalyst formed by plasma electrolytic oxidation. Mater. Lett. 196, 292–295 (2017)

    Article  CAS  Google Scholar 

  19. S.K. Shinde, S.M. Mohite, A.A. Kadam, H.M. Yadav, G.S. Ghodake, K.Y. Rajpure, D.S. Lee, D.-Y. Kim, Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance. J. Electroanal. Chem. 850, 113433 (2019)

    Article  CAS  Google Scholar 

  20. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52(10), 3581–3599 (2013)

    Article  CAS  Google Scholar 

  21. A. Enesca, L. Isac, L. Andronic, D. Perniu, A. Duta, Tuning SnO2–TiO2 tandem systems for dyes mineralization. Appl. Catal. B. 147, 175–184 (2014)

    Article  CAS  Google Scholar 

  22. Z. Balta, E.B. Simsek, Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation. New Carbon Mater. 35(4), 371–383 (2020)

    Article  Google Scholar 

  23. C.F. Carbuloni, J.E. Savoia, J.S.P. Santos, C.A.A. Pereira, R.G. Marques, V.A.S. Ribeiro, A.M. Ferrari, Degradation of metformin in water by TiO2–ZrO2 photocatalysis. J. Environ. Manag. 262, 110347 (2020)

    Article  CAS  Google Scholar 

  24. M. Mondal, H. Dutta, S.K. Pradhan, Enhanced photocatalysis performance of mechano-synthesized V2O5–TiO2 nanocomposite for wastewater treatment: correlation of structure with photocatalytic performance. Mater. Chem. Phys. 248, 122947 (2020)

    Article  CAS  Google Scholar 

  25. I. Tanabe, T. Ryoki, Y. Ozaki, Significant enhancement of photocatalytic activity of rutile TiO2 compared with anatase TiO2 upon Pt nanoparticle deposition studied by far-ultraviolet spectroscopy. Phys. Chem. Chem. Phys. 16, 7749–7753 (2014)

    Article  CAS  Google Scholar 

  26. N.S. Allen, N. Mahdjoub, V. Vishnyakov, P.J. Kelly, R.J. Kriek, The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polym. Degrad. Stab. 150, 31–36 (2018)

    Article  CAS  Google Scholar 

  27. N. Radic, B. Grbic, S. Petrovic, S. Stojadinovic, N. Tadic, P. Stefanov, Effect of cerium oxide doping on the photocatalytic properties of rutile TiO2 films prepared by spray pyrolysis. Physica B 599, 412544 (2020)

    Article  CAS  Google Scholar 

  28. R. Madaj, E. Sobiecka, H. Kalinowska, Lindane, kepone and pentachlorobenzene: chloropesticides banned by Stockholm convention. Int. J. Environ. Sci. Technol. 15, 471–480 (2018)

    Article  CAS  Google Scholar 

  29. T. Novakovic, N. Radic, B. Grbic, T. Marinova, P. Stefanov, D. Stoychev, Oxidation of n-hexane over Pt and Cu–Co oxide catalysts supported on a thin-film zirconia/stainless steel carrier. Catal. Commun. 9, 1111–1118 (2008)

    Article  CAS  Google Scholar 

  30. H. Imai, H. Hirashima, Preparation of porous anatase coating from sol-gel derived titanium dioxide and titanium dioxide silica by water vapor exposure. J. Am. Ceram. Soc. 82, 2301–2304 (1999)

    Article  CAS  Google Scholar 

  31. N. Arconada, A. Duran, S. Suarez, R. Portela, J.M. Coronado, B. Sanchez, Y. Castro, Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol–gel. Appl. Catal. B. 86, 1–7 (2009)

    Article  CAS  Google Scholar 

  32. C.A. Strydom, C.P.J. Van Vuuren, The thermal decomposition of cerium (III) nitrate. J. Therm. Anal. 32, 157–160 (1987)

    Article  CAS  Google Scholar 

  33. L. Jun, W. Liang-liang, F. Zhao-yang, C. Xian, T. Ji-hai, C. Mi-fen, Q. Xu, Structure and properties of amorphous CeO2@TiO2 catalyst and its performance in the selective catalytic reduction of NO with NH3. J. Fuel Chem. Technol. 44(8), 954–960 (2016)

    Article  Google Scholar 

  34. Y. Wang, J. Zhao, T. Wang, Y. Li, X. Li, J. Yin, C. Wang, CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: surface species and their reactivity. J. Catal. 337, 293–302 (2016)

    Article  CAS  Google Scholar 

  35. H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, Y. Su, Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J. Photochem. Photobiol. A 223, 157–164 (2011)

    Article  CAS  Google Scholar 

  36. B. Huang, D. Yu, Z. Sheng, L. Yang, Novel CeO2@TiO2 core–shell nanostructure catalyst for selective catalytic reduction of NOx with NH3. J. Environ. Sci. 55, 129–136 (2017)

    Article  CAS  Google Scholar 

  37. J. Cheng, L. Song, R. Wu, S. Li, Y. Sun, H. Zhu, W. Qiu, H. He, Promoting effect of microwave irradiation on CeO2–TiO2 catalyst for selective catalytic reduction of NO by NH3. J. Rare Earths 38, 59–69 (2020)

    Article  CAS  Google Scholar 

  38. M.H. Basha, N.O. Gopal, Solution combustion synthesis and characterization of phosphorus doped TiO2–CeO2 nanocomposite for photocatalytic applications. Mater. Sci. Eng. B 236–237, 43–47 (2018)

    Article  Google Scholar 

  39. R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Colloid Interface Sci. 272, 102009 (2019)

    Article  CAS  Google Scholar 

  40. I. Ahmad, M.S. Akhtar, M.F. Manzoor, M. Wajid, M. Noman, E. Ahmed, M. Ahmad, W.Q. Khan, A.M. Rana, Synthesis of yttrium and cerium doped ZnO nanoparticles as highly inexpensive and stable photocatalysts for hydrogen evolution. J. Rare Earths 39, 440–445 (2021)

    Article  CAS  Google Scholar 

  41. I. Ahmad, Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye. Sep. Purif. Technol. 227, 115726 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-9/2021-14/200026) and by the bilateral cooperation between the Bulgarian Academy of Sciences and the Serbian Academy of Sciences and Fine Arts (project ‘‘Heterogeneous catalytical and photocatalytical destruction of organic and pharmaceutical contaminants in the nature by multicomponent systems’’).

Author information

Authors and Affiliations

Authors

Contributions

NR: Supervision; Conceptualization; Methodology; Formal analysis; Investigation; Writing–Original Draft; Visualization. BG: Conceptualization; Investigation; Writing–Original Draft; Supervision. SS: Methodology; Investigation; Formal analysis; Visualization. MI: Methodology; Resources; Investigation. OD: Methodology; Investigation. PS: Methodology; Resources; Investigation; Conceptualization.

Corresponding author

Correspondence to Nenad Radić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. We declare that this submission complies to the ethical standards of the journal and that there is no conflict of interest. We declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. The article has been written by the stated authors who are all aware of its content and approve its submission. All authors have endorsed the publication of this research. If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radić, N., Grbić, B., Stojadinović, S. et al. TiO2–CeO2 composite coatings for photocatalytic degradation of chloropesticide and organic dye. J Mater Sci: Mater Electron 33, 5073–5086 (2022). https://doi.org/10.1007/s10854-022-07698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07698-9

Navigation