Skip to main content
Log in

Effect of particle shape on electrical conductivity and negative permittivity spectra of Cu granular composite materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic (EM) metamaterials with negative permittivity and permeability can be used to develop advanced EM devices such as perfect EM wave absorbers and frequency selective microwave shields. One of the approaches has been to apply artificial periodic structures such as printed metal patterns or strip lines. However, granular composite materials embedded with metallic and/or magnetic particles can also be utilized to develop EM metamaterials. In this paper, we studied the effect of particle shape on the electrical conductivity and the relative complex permittivity spectra of Cu granular composite materials in the radio-frequency (RF) to the microwave frequency range. Three types of Cu composites containing spherical, flaky, and arborized particles were prepared, and their electrical conductivity and relative complex permittivity were measured. An insulator-to-metal transition was observed at the percolation threshold φc in all composites; the φc of the flaky and arborized particle composites was lower than that of the spherical particle composites. In composites above φc, a negative permittivity spectrum was observed regardless of the particle shape. The negative permittivity spectra of the percolated Cu particle composites were analysed using the Drude model. It was shown that the plasma frequency at which the real part of the permittivity changes from negative to positive depends not only on the particle content but also on the particle shape. Thus, our study facilitates the adjustment of the negative permittivity and enhancement in the electromagnetic properties of EM metamaterials, which can lead to the development of advanced EM devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Landy, S. Sajuyigbe, U. Mock, D. Smith, W. Padilla, Phys. Rev. Lett. 100, 207402 (2008). https://doi.org/10.1103/PhysRevLett.100.207402

    Article  CAS  Google Scholar 

  2. T. Tsutaoka, K. Hatakeyama, IEICE Trans. Commun. 93(7), 1858–1861 (2010). https://doi.org/10.1587/transcom.E93.B.1858

    Article  Google Scholar 

  3. C.M. Watts, X. Liu, W.J. Padilla, Adv. Mater. 24, 98–120 (2012). https://doi.org/10.1002/adma.201200674

    Article  CAS  Google Scholar 

  4. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, J. Phys, J. Phys. Condens. Matter 10, 4785–4809 (1998)

    Article  CAS  Google Scholar 

  5. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77–79 (2001). https://doi.org/10.1126/science.1058847

    Article  CAS  Google Scholar 

  6. S.T. Chui, L.B. Hu, Phys. Rev. B 65, 144407 (2002). https://doi.org/10.1103/PhysRevB.65.144407

    Article  CAS  Google Scholar 

  7. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Appl. Phys. Lett. 102, 181904 (2013). https://doi.org/10.1063/1.4804379

    Article  CAS  Google Scholar 

  8. D. Estevez, F. Qin, Y. Luo, L. Quan, Y.-W. Mai, L. Panina, H.-X. Peng, Compos. Sci. Technol. 171, 206–217 (2019). https://doi.org/10.1016/j.compscitech.2018.12.016

    Article  CAS  Google Scholar 

  9. K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J.E. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, R. Fan, D. Cao, Polymer 125, 50–57 (2017). https://doi.org/10.1016/j.polymer.2017.07.083

    Article  CAS  Google Scholar 

  10. T. Kasagi, T. Tsutaoka, K. Hatakeyama, Appl. Phys. Lett. 89, 172502 (2006). https://doi.org/10.1063/1.2198113

    Article  CAS  Google Scholar 

  11. C. Mitsumata, S. Tomita, Appl. Phys. Lett. 91, 223104 (2007). https://doi.org/10.1063/1.2816894

    Article  CAS  Google Scholar 

  12. T. Kasagi, T. Tsutaoka, K. Hatakeyama, J. Appl. Phys. 116, 153901 (2014). https://doi.org/10.1063/1.4898072

    Article  CAS  Google Scholar 

  13. H. Massango, T. Tsutaoka, T. Kasagi, Mater. Res. Exp. 3, 095801 (2016). https://doi.org/10.1088/2053-1591/3/9/095801

    Article  CAS  Google Scholar 

  14. Z.-C. Shi, R.-H. Fan, Z.-D. Ahang, L. Qian, M. Gao, M. Zhang, L.-T. Zheng, X.-H. Zhang, L.-W. Yin, Adv. Mater. 23, 2349–2352 (2012). https://doi.org/10.1002/adma.201200157

    Article  CAS  Google Scholar 

  15. T. Tsutaoka, K. Fukuyama, H. Kinoshita, T. Kasagi, S. Yamamoto, K. Hatakeyama, Appl. Phys. Lett. 103, 261906 (2013). https://doi.org/10.1063/1.4858976

    Article  CAS  Google Scholar 

  16. T. Tsutaoka, H. Massango, T. Kasagi, S. Yamamoto, K. Hatakeyama, Appl. Phys. Lett. 108, 191904 (2016). https://doi.org/10.1063/1.4949560

    Article  CAS  Google Scholar 

  17. H. Massango, T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, J. Magn. Magn. Mater. 442, 403–408 (2017). https://doi.org/10.1016/j.jmmm.2017.07.018

    Article  CAS  Google Scholar 

  18. C. Cheng, R. Fan, G. Fan, H. Iu, J. Zhang, J. Shen, Q. Ma, R. Wei, Z. Guo, J. Mater. Chem. C 7, 3160–3167 (2019). https://doi.org/10.1039/c9tc00291j

    Article  CAS  Google Scholar 

  19. T. Kasagi, K. Kono, T. Tsutaoka, S. Yamamoto, IEEE Trans. Magn. 55(2), 2800204 (2019). https://doi.org/10.1109/TMAG.2018.2869581

    Article  Google Scholar 

  20. H. Massango, T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, J. Appl. Phys. 121, 1039029 (2017). https://doi.org/10.1063/1.4977997

    Article  CAS  Google Scholar 

  21. Y. An, J. Qin, K. Sun, J. Xin, X. Li, X. Wu, W. Zhang, R. Fan, J. Mater. Sci.: Mater. Electron. 32, 11588–11592 (2021). https://doi.org/10.1007/s10854-021-05763-3

    Article  CAS  Google Scholar 

  22. S. Yoshida, M. Sato, E. Sugawara, Y. Shimada, J. Appl. Phys. 85(8), 4636–4638 (1999). https://doi.org/10.1063/1.370432

    Article  CAS  Google Scholar 

  23. T. Kasagi, T. Tsutaoka, K. Hatakeyama, IEEE Trans. Magn. 35, 3424–3426 (1999)

    Article  Google Scholar 

  24. Q. Xue, Eur. Poly. J. 40, 323–327 (2004). https://doi.org/10.1016/j.eurpolymj.2003.10.011

    Article  CAS  Google Scholar 

  25. H. Kura, K. Hata, T. Oikawa, M. Takahashi, T. Ogawa, Scr. Mater. 76, 65–68 (2014). https://doi.org/10.1016/j.scriptamat.2013.12.018

    Article  CAS  Google Scholar 

  26. T. Kasagi, H. Massango, T. Tsutaoka, S. Ymamoto, K. Hatakeyama, Mater. Res. Exp. 5, 036107 (2018). https://doi.org/10.1088/2053-1591/aab4de

    Article  CAS  Google Scholar 

  27. J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, IEEE Trans. Microw. Theory Tech. 38, 1096–1103 (1990). https://doi.org/10.1109/22.57336

    Article  Google Scholar 

  28. A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  29. W.B. Weir, Proc. IEEE 62(1), 33–36 (1974). https://doi.org/10.1109/PROC.1974.9382

    Article  Google Scholar 

  30. S.R. Elliott, Adv. Phys. 36, 135–218 (1987). https://doi.org/10.1080/00018738700101971

    Article  CAS  Google Scholar 

  31. A. Bose, S. Basu, S. Banerjee, D. Chakravorty, J. Appl. Phys. 98, 074307 (2005). https://doi.org/10.1063/1.2084311

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP20K06758.

Funding

This work was supported by JSPS KAKENHI (Grant Number JP20K06758).

Author information

Authors and Affiliations

Authors

Contributions

TT designed research; TT and SY performed the experiments: TT and SY analysed the data; TT and SY wrote the paper.

Corresponding author

Correspondence to Teruhiro Kasagi.

Ethics declarations

Conflict of interest

The authors declare no conflicts in interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasagi, T., Yamamoto, S. Effect of particle shape on electrical conductivity and negative permittivity spectra of Cu granular composite materials. J Mater Sci: Mater Electron 33, 4974–4983 (2022). https://doi.org/10.1007/s10854-021-07686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07686-5

Navigation