Skip to main content
Log in

High Dielectric Constant YIG Ferrites with Low Sintering Temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Yttrium-Iron-Garnet (YIG) ferrites are widely used in microwave communication systems due to its excellent gyromagnetic properties. However, these YIG materials were normally synthesized under a high sintering temperature (− 1450 °C). In this work, a high dielectric constant YIG ferrite with a formula of Bi1.4Y1.3-xCa0.3+xZr0.3SnxFe4.5-xO11.7 was designed and successfully fabricated under a temperature as low as 950 °C, by using the conventional solid-state reaction method. And the effect of Ca-Sn co-substitution on the microstructure, dielectric properties, and magnetic properties were systematically investigated. In the frequency range of 1 MHz–0.5 GHz, the dielectric constant (ε') of all samples showed frequency-independent behavior and abnormally high values (> 30). And the dielectric loss (tanδ) value remained relatively low (10–3) in this frequency range. However, ε' and tanδ both increased with increasing frequency in the range of 0.5 GHz–1 GHz. Results further indicate that the increase of Ca–Sn co-substitution made the lattice constant increase approximately linearly, while the volume density gradually decreased. An excellent electromagnetic performance of low-temperature sintered YIG ferrite was obtained: 4πMs = 1843.34Gs, Hc = 2.51Oe, and ΔH = 190Oe. This study indicates that the as-synthesized YIG ferrites are suitable for processing high-performance, miniaturized radio frequency passive devices through LTCC method, and they are promising for microwave communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Du, M.S. Fu, D. Zhou, H.H. Guo, H.T. Chen, J. Zhang, J.P. Wang, S.F. Wang, H.W. Liu, W.F. Liu, L. Li, Z. Xu, Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications. J. Am. Ceram. Soc. 104, 4659–4668 (2021)

    Article  CAS  Google Scholar 

  2. V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, C.E. Patton, M. Abe, O. Acher, C. Vittoria, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  CAS  Google Scholar 

  3. J. Wang, J. Yang, Y. Jin, T. Qiu, Effect of manganese addition on the microstructure and electromagnetic properties of YIG. J. Rare Earths 29, 562–566 (2011)

    Article  CAS  Google Scholar 

  4. R. Peng, Y. Lu, Q. Zhang, Y. Lai, G. Yu, X. Wu, Y. Li, H. Su, H. Zhang, Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: a mechanism study of nickel substitution using DFT calculation. J. Adv. Ceram. 10, 1398–1407 (2021)

    Article  CAS  Google Scholar 

  5. R. Peng, H. Su, D. An, Y. Lu, Z. Tao, D. Chen, L. Shi, Y. Li, The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment. J. Market. Res. 9, 1344–1356 (2020)

    CAS  Google Scholar 

  6. R. Peng, H. Su, Y.-X. Li, Y. Lu, L. Shi, W. Du, X. Tang, G. Yu, M. Chen, Three-phase borate solid solution with low sintering temperature, high quality factor, and low dielectric constant: experimental and DFT study. Res Square (2020). https://doi.org/10.21203/rs.3.rs-99564/v1

  7. R. Peng, Y.X. Li, Y.C. Lu, Y.R. Yun, W. Du, Z.H. Tao, B. Liao, High-performance microwave dielectric composite ceramics sintered at low temperature without sintering –aids. J. Alloys Compd. 831, 154878 (2020)

    Article  CAS  Google Scholar 

  8. R. Peng, Y.C. Lu, Y.X. Li, H. Su, L. Shi, G.L. Yu, Y.M. Lai, Q. Zhao, X.L. Shi, H.W. Zhang, Mechanism study of the Mn-substituted magnesium borate: decreased sintering temperature and improved dielectric property. J. Am. Ceram. Soc. 104, 4614–4623 (2021)

    Article  CAS  Google Scholar 

  9. R. Peng, Y. Lu, Z. Tao, D. Chen, L. Shi, Q. Zhang, Y. Li, Improved microwave dielectric properties and sintering behavior of LiZnPO4 ceramic by Ni2+-ion doping based on first-principle calculation and experiment. Ceram. Int. 46, 11021–11032 (2020)

    Article  CAS  Google Scholar 

  10. H. Lee, Y. Yoon, H. Yoo, S.A. Choi, K. Kim, Y. Choi, H. Melikyan, T. Ishibashi, B. Friedman, K. Lee, Magnetic and FTIR studies of BixY3−xFe5O12 (x=0, 1, 2) powders prepared by the metal organic decomposition method. J. Alloy. Compd. 509, 9434–9440 (2011)

    Article  CAS  Google Scholar 

  11. R.Y. Hong, Y.J. Wu, B. Feng, G.Q. Di, H.Z. Li, B. Xu, Y. Zheng, D.G. Wei, Microwave-assisted synthesis and characterization of Bi-substituted yttrium garnet nanoparticles. J. Magn. Magn. Mater. 321, 1106–1110 (2009)

    Article  CAS  Google Scholar 

  12. S.T. Zhang, B.L. Xu, J.K. Cheng, S.L. Luo, Y. Ding, S.Y. Ji, T. Duan, J.J. Ma, C.R. Jiang, Phase evolution and chemical stability of Nd-doped Y3Fe5O12 waste forms synthesized in molten salt at a low temperature. J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.18122

    Article  Google Scholar 

  13. J.-P. Ganne, R. Lebourgeois, M. Paté, D. Dubreuil, L. Pinier, H. Pascard, The electromagnetic properties of Cu-substituted garnets with low sintering temperature. J. Eur. Ceram. Soc. 27, 2771–2777 (2007)

    Article  CAS  Google Scholar 

  14. S. Geller, G.P. Espinosa, H.J. Williams, R.C. Sherwood, E.A. Nesbitt, Ferrimagnetic garnets containing pentavalent vanadium. J. Appl. Phys. 35, 570–572 (1964)

    Article  CAS  Google Scholar 

  15. C.-Y. Tsay, C.-Y. Liu, K.-S. Liu, I.N. Lin, L.-J. Hu, T.-S. Yeh, Low temperature sintering of microwave magnetic garnet materials. J. Magn. Magn. Mater. 239, 490–494 (2002)

    Article  CAS  Google Scholar 

  16. J. Wang, Y. Jin, J. Yang, Y. Huang, T. Qiu, Effect of ZrO2 addition on the microstructure and electromagnetic properties of YIG. J. Alloy. Compd. 509, 5853–5857 (2011)

    Article  CAS  Google Scholar 

  17. Y. Machida, Y. Nakayama, H. Saji, T. Yamadaya, M. Asanuma, Magnetic properties and resonance linewidths of Zr- and Ti-subsituted Ca-V garnet. IEEE Trans. Magn. 8, 444–446 (1972)

    Article  CAS  Google Scholar 

  18. S. Geller, H.J. Williams, G.P. Espinosa, R.C. Sherwood, M.A. Gilleo, Reduction of the preparation temperature of polycrystalline garnets by Bismuth substitution. Appl. Phys. Lett. 3, 21–22 (1963)

    Article  CAS  Google Scholar 

  19. Y.Y. Song, S.C. Yu, W.T. Kim, J.R. Park, T.H. Kim, The effect of Bi2O3 addition on the microstructure and magnetic properties of YIG. J. Magn. Magn. Mater. 177–181, 257–258 (1998)

    Article  Google Scholar 

  20. C.-Y. Tsay, C.-Y. Liu, K.-S. Liu, I.N. Lin, L.-J. Hu, T.-S. Yeh, Low temperature sintering of microwave magnetic garnet materials. Mater. Chem. Phys. 79, 138–142 (2003)

    Article  CAS  Google Scholar 

  21. N. Jia, Z. Huaiwu, J. Li, Y. Liao, L. Jin, C. Liu, V.G. Harris, Polycrystalline Bi substituted YIG ferrite processed via low temperature sintering. J. Alloy. Compd. 695, 931–936 (2017)

    Article  CAS  Google Scholar 

  22. Y. Yang, Z. Yu, Q. Guo, K. Sun, R. Guo, X. Jiang, Y. Liu, H. Liu, G. Wu, Z. Lan, Thermomagnetization characteristics and ferromagnetic resonance linewidth broadening mechanism for Ca-Sn Co-substituted YIG ferrites. Ceram. Int. 44, 11718–11723 (2018)

    Article  CAS  Google Scholar 

  23. M.A. Musa, R.A.S. Azis, N.H. Osman, J. Hassan, T. Zangina, Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAlG) nanoferrite via sol-gel synthesis. Results Phys. 7, 1135–1142 (2017)

    Article  Google Scholar 

  24. S. Atiq, M. Majeed, A. Ahmad, S.K. Abbas, M. Saleem, S. Riaz, S. Naseem, Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 43, 2486–2494 (2017)

    Article  CAS  Google Scholar 

  25. I. Ghafoor, S.A. Siddiqi, S. Atiq, S. Riaz, S. Naseem, Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La01Bi09FeO3 multiferroics. J. Sol-Gel Sci. Technol. 74, 352–356 (2015)

    Article  CAS  Google Scholar 

  26. P.B.A. Fechine, F.M.M. Pereira, M.R.P. Santos, F.P. Filho, A.S. de Menezes, R.S. de Oliveira, J.C. Góes, L.P. Cardoso, A.S.B. Sombra, Microstructure and magneto-dielectric properties of ferrimagnetic composite GdIGX:YIG1−X at radio and microwave frequencies. J. Phys. Chem. Solids 70, 804–810 (2009)

    Article  CAS  Google Scholar 

  27. A. Globus, P. Duplex, M. Guyot, Determination of initial magnetization curve from crystallites size and effective anisotropy field. IEEE Trans. Magn. 7, 617–622 (1971)

    Article  CAS  Google Scholar 

  28. J. Xu, P. Lin, Q. Chen, X. Zhao, P. He, T. Lin, C. Jiang, Y. Liu, H. Liu, W. Long, Evolutionary mechanism of YBO3 whisker and its effect on the properties of YIG ferrite joint brazed by Bi2O3–B2O3–SiO2–ZnO glass. Ceram. Int. 47, 973–983 (2021)

    Article  CAS  Google Scholar 

  29. J. Zhu, Y. Miao, L. Qi, Y. Qu, Y. He, Q. Yang, Z. Chen, Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography. Appl. Phys. Lett. 110, 201101 (2017)

    Article  Google Scholar 

  30. T.Y. Byun, S.C. Byeon, K.S. Hong, C.K. Kim, Origin of line broadening in Co-substituted NiZnCu ferrites. J. Appl. Phys. 87, 6220–6222 (2000)

    Article  CAS  Google Scholar 

  31. F. Gao, J. Li, H. Su, Y. Sun, Y. Yang, G. Wang, X. Han, Q. Li, Low dielectric loss and narrow FMR linewidth of Ca-Ge co-substituted YInIG ferrites for microwave device application. J. Alloys Compd. 885, 160965 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sichuan Science and Technology Program, (Grant No. 2021JDTD0026), Jiangxi Innovative Talent Program, and Jiangxi Guochuang & UESTC Joint R & D Center Program (Grant No. H04W190371).

Author information

Authors and Affiliations

Authors

Contributions

RF: Methodology, Investigation, Writing—Original Draft. YL: Funding acquisition, Review & Editing, RP: Validation, Formal analysis, Visualization, Software, YL: Validation, Formal analysis, Visualization, Supervision, QW: Funding acquisition, Review & Editing.

Corresponding author

Correspondence to Yuanxun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, R., Li, Y., Peng, R. et al. High Dielectric Constant YIG Ferrites with Low Sintering Temperature. J Mater Sci: Mater Electron 33, 4914–4923 (2022). https://doi.org/10.1007/s10854-021-07681-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07681-w

Navigation