Skip to main content
Log in

The doping of SZC solders with bismuth to improve their thermal and tensile characteristics for microelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–Zn–Cu is one of the most popular soldering alloys, especially when it has been doped with Bi, which has proved very effective. The Sn–6.5Zn–0.3Cu (SZC–0.0Bi) stress–strain characteristics have been tested and compared to the SZC–1.0 Bi and SZC–3.0 Bi solder alloys. The results of the differential scanning calorimeter confirmed that the melting temperatures, pasty ranges, and undercooling levels would significantly reduce with Bi addition to the SZC solder alloy. Also, it has been found that SZC–3.0 Bi alloy has the highest ultimate tensile stress, yield stress, and Young’s modulus compared to SZC–0.0 Bi and SZC–1.0 Bi alloys. The higher characteristics of stress–strain were caused by the Bi precipitation reinforcing effects as well as solid solution mechanism. The rush of these Bi atoms or particles will greatly improve the microstructure, block dislocation mobility, and raise of percent of Bi to 3.0 wt% enhanced the hardening parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the results of this study are available on request from the corresponding author.

References

  1. E.A. Eid, A.N. Fouda, E.S.M. Duraia, Effect of adding 0.5wt% ZnO nanoparticles, temperature and strain rate on tensile properties of Sn-5.0wt% Sb-0.5wt% Cu (SSC505) lead free solder alloy. Mater. Sci. Eng. A 657, 104–114 (2016). https://doi.org/10.1016/j.msea.2016.01.081

    Article  CAS  Google Scholar 

  2. E.H. Amalu, N.N. Ekere, High temperature reliability of lead-free solder joints in a flip chip assembly. J. Mater. Process. Technol. 212, 471–483 (2012). https://doi.org/10.1016/j.jmatprotec.2011.10.011

    Article  CAS  Google Scholar 

  3. A.A. El-Daly, A.M. El-Taher, S. Gouda, Novel Bi-containing Sn-1.5Ag-0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products. (Elsevier Ltd, Amsterdam, 2015). https://doi.org/10.1016/j.matdes.2014.10.006.

  4. M. Abtew, G. Selvaduray, Lead-free solders in microelectronics. Mater. Sci. Eng. R Rep. 27, 95–141 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3

    Article  Google Scholar 

  5. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, A.A. Ibrahiem, Design of lead-free candidate alloys for low-temperature soldering applications based on the hypoeutectic Sn-6.5Zn alloy. Mater. Des. 56, 594–603 (2014). https://doi.org/10.1016/j.matdes.2013.11.064

    Article  CAS  Google Scholar 

  6. C.Y. Liu, M.H. Hon, M.C. Wang, Y.R. Chen, K.M. Chang, W.L. Li, Effects of aging time on the mechanical properties of Sn-9Zn-1.5Ag-xBi lead-free solder alloys. J. Alloys Compd. 582, 229–235 (2014). https://doi.org/10.1016/j.jallcom.2013.08.022

    Article  CAS  Google Scholar 

  7. A.A. El-Daly, A.Z. Mohamad, A. Fawzy, A.M. El-Taher, Creep behavior of near-peritectic Sn-5Sb solders containing small amount of Ag and Cu. Mater. Sci. Eng. A. 528, 1055–1062 (2011). https://doi.org/10.1016/j.msea.2010.11.001

    Article  CAS  Google Scholar 

  8. X. Wei, H. Huang, L. Zhou, M. Zhang, X. Liu, On the advantages of using a hypoeutectic Sn-Zn as lead-free solder material. Mater. Lett. 61, 655–658 (2007). https://doi.org/10.1016/j.matlet.2006.05.029

    Article  CAS  Google Scholar 

  9. J. Wu, S.B. Xue, J.W. Wang, S. Liu, Y.L. Han, L.J. Wang, Recent progress of Sn–Ag–Cu lead-free solders bearing alloy elements and nanoparticles in electronic packaging. J. Mater. Sci. Mater. Electron. 27(12), 12729–63 (2016). https://doi.org/10.1007/s10854-016-5407-3

    Article  CAS  Google Scholar 

  10. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Properties enhancement of low Ag-content Sn-Ag-Cu lead-free solders containing small amount of Zn. J. Alloys Compd. 614, 20–28 (2014). https://doi.org/10.1016/j.jallcom.2014.06.009

    Article  CAS  Google Scholar 

  11. A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, M. Ragab, Influence of Zn addition on the microstructure, melt properties and creep behavior of low Ag-content Sn-Ag-Cu lead-free solders. Mater. Sci. Eng. A. 608, 130–138 (2014). https://doi.org/10.1016/j.msea.2014.04.070

    Article  CAS  Google Scholar 

  12. E. Çadirli, U. Böyük, H. Kaya, N. Maraşli, Determination of mechanical, electrical and thermal properties of the Sn - Bi - Zn ternary alloy. J. Non. Cryst. Solids. 357, 2876–2881 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.03.025

    Article  CAS  Google Scholar 

  13. X.P. Zhang, L.M. Yin, C.B. Yu, Thermal creep and fracture behaviors of the lead-free Sn-Ag-Cu-Bi solder interconnections under different stress levels. J. Mater. Sci. Mater. Electron. 19, 393–398 (2008). https://doi.org/10.1007/s10854-007-9351-0

    Article  CAS  Google Scholar 

  14. A.E. Hammad, A.A. Ibrahiem, Enhancing the microstructure and tensile creep resistance of Sn-3.0Ag-0.5Cu solder alloy by reinforcing nano-sized ZnO particles. Microelectron. Reliab. 75, 187–194 (2017). https://doi.org/10.1016/j.microrel.2017.07.034

    Article  CAS  Google Scholar 

  15. H. Kang, S.H. Rajendran, J.P. Jung, Low melting temperature Sn-Bi solder: effect of alloying and nanoparticle addition on the microstructural, thermal, interfacial bonding, and mechanical characteristics. Metals 11(2), 364 (2021)

    Article  CAS  Google Scholar 

  16. A.A. El-Daly, H.A. Hashem, N. Radwan, F. El-Tantawy, T.R. Dalloul, N.A. Mansour, H.M. Abd-Elmoniem, E.H. Lotfy, Robust effects of Bi doping on microstructure development and mechanical properties of hypoeutectic Sn–6.5Zn solder alloy. J. Mater. Sci. Mater. Electron. 27, 2950–2962 (2016). https://doi.org/10.1007/s10854-015-4115-8

    Article  CAS  Google Scholar 

  17. E.A. Eid, A.M. Deghady, A.N. Fouda, Enhanced microstructural, thermal and tensile characteristics of heat treated Sn-5.0Sb-0.3Cu (SSC-503) Pb-free solder alloy under high pressure. Mater. Sci. Eng. A. (2019). https://doi.org/10.1016/j.msea.2018.11.137

    Article  Google Scholar 

  18. A.B. El Basaty, A.M. Deghady, E.A. Eid, Influence of small addition of antimony (Sb) on thermal behavior, microstructural and tensile properties of Sn-9.0Zn-0.5Al Pb-free solder alloy. Mater. Sci. Eng. A 701, 245–253 (2017). https://doi.org/10.1016/j.msea.2017.06.092

    Article  CAS  Google Scholar 

  19. M. Kamal, M.S. Mikhail, A.B. Bediwi, E.S. Gouda, Decomposition behavior and properties of Sn-9Zn-1Bi lead-free solder alloy with copper content. Radiat. Eff. Defects Solids. 161, 715–721 (2006). https://doi.org/10.1080/10420150600966034

    Article  CAS  Google Scholar 

  20. P. Pandey, C.S. Tiwary, K. Chattopadhyay, Effects of Cu and in trace elements on microstructure and thermal and mechanical properties of Sn-Zn eutectic alloy. J. Electron. Mater. 48, 2660–2669 (2019). https://doi.org/10.1007/s11664-018-06869-x

    Article  CAS  Google Scholar 

  21. E.A. Eid, E.H. El-Khawas, A.S. Abd-Elrahman, Impact of Sb additives on solidification performance, microstructure enhancement and tensile characteristics of Sn-6.5Zn-0.3Cu Pb-free solder alloy. J. Mater. Sci. Mater. Electron. 30, 6507–6518 (2019). https://doi.org/10.1007/s10854-019-00956-3

    Article  CAS  Google Scholar 

  22. G. Ren, M.N. Collins, The effects of antimony additions on microstructures, thermal and mechanical properties of Sn-8Zn-3Bi alloys. Mater. Des. 119, 133–140 (2017). https://doi.org/10.1016/j.matdes.2017.01.061

    Article  CAS  Google Scholar 

  23. E.A. Eid, A.B. El-Basaty, A.M. Deghady, S. Kaytbay, A. Nassar, Influence of nano-metric Al2O3 particles addition on thermal behavior, microstructural and tensile characteristics of hypoeutectic Sn-5.0Zn-0.3Cu Pb-free solder alloy. J. Mater. Sci. Mater. Electron. 30, 4326–4335 (2019). https://doi.org/10.1007/s10854-019-00726-1

    Article  CAS  Google Scholar 

  24. R. Mahmudi, A.R. Geranmayeh, H. Khanbareh, N. Jahangiri, Indentation creep of lead-free Sn-9Zn and Sn-8Zn-3Bi solder alloys. Mater. Des. 30, 574–580 (2009). https://doi.org/10.1016/j.matdes.2008.05.058

    Article  CAS  Google Scholar 

  25. F. Yang, L. Zhang, Z. Liu, S. Zhong, J. Ma, L. Bao, Properties and microstructures of Sn-Bi-X lead-free solders. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/9265195

    Article  Google Scholar 

  26. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Thermal analysis and mechanical properties of Sn-1.0Ag-0.5Cu solder alloy after modification with SiC nano-sized particles. J. Mater. Sci. Mater. Electron. 24, 2976–2988 (2013). https://doi.org/10.1007/s10854-013-1200-8

    Article  CAS  Google Scholar 

  27. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Enhanced ductility and mechanical strength of Ni-doped Sn-3.0Ag-0.5Cu lead-free solders. Mater. Des. 55, 309–318 (2014). https://doi.org/10.1016/j.matdes.2013.10.009

    Article  CAS  Google Scholar 

  28. D. Witkin, Creep behavior of Bi-containing lead-free solder alloys. J. Electron. Mater. 41, 190–203 (2012). https://doi.org/10.1007/s11664-011-1748-0

    Article  CAS  Google Scholar 

  29. N. Hidaka, H. Watanabe, M. Yoshiba, Creep behavior of lead-free Sn-Ag-Cu + Ni-ge solder alloys. J. Electron. Mater. 38, 670–677 (2009). https://doi.org/10.1007/s11664-009-0689-3

    Article  CAS  Google Scholar 

  30. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Improved creep resistance and thermal behavior of Ni-doped Sn-3.0Ag-0.5Cu lead-free solder. J. Alloys Compd. 587, 32–39 (2014). https://doi.org/10.1016/j.jallcom.2013.10.148

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMD: idea, conceptualization, methodology, and writing. MMF: idea, visualization, data curation, and original draft preparation. EAE: investigation, reviewing and editing.

Corresponding author

Correspondence to A. M. Deghady.

Ethics declarations

Conflict of interest

There is no conflict interesting between authors and any person or authorities and the idea of research and its results are owning to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deghady, A.M., Fadel, M.M. & Eid, E.A. The doping of SZC solders with bismuth to improve their thermal and tensile characteristics for microelectronic applications. J Mater Sci: Mater Electron 33, 4831–4846 (2022). https://doi.org/10.1007/s10854-021-07672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07672-x

Navigation