Skip to main content
Log in

Fabrication and performance improvement of Ag grid transparent conducting films using selective laser ablation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver (Ag) grid transparent conducting films (TCFs) were firstly fabricated by selective laser ablation of Ag thin films prepared by radio frequency magnetron sputtering under the conventional scanning method (i.e., line-typed cyclic scanning, LTCS). The effects of grid parameters (i.e., Ag grid height, pitch, and line-width) on TCF morphology, optical transmittance, electrical conductivity, and comprehensive performance were studied. The optimal Ag grid height, pitch, and line-width were determined to be 800 nm, 1.0 mm, and 90 μm, respectively, and the resulting TCF showed a figure of merit of 11.38 × 10–2 Ω–1. Subsequently, two new scanning methods, i.e., frame-typed serial scanning (FTSS) and frame-line combined scanning (FLCS), were adopted to further optimize the fabrication process, and thus the TCF comprehensive performance. The results showed that as compared to the LTCS method, the FTSS and FLCS methods could effectively eliminate semicircular-shaped Ag grid line edges, and thus obtain relatively smooth and flat ones without obvious Ag material residues. The Ag grid TCF fabricated by using the FLCS method had the highest figure of merit of 13.02 × 10–2 Ω–1, indicating a further improvement in comprehensive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Bhattacharya, A. Peer, P.H. Joshi, R. Biswas, V.L. Dalal, Blue photon management by inhouse grown ZnO: Al cathode for enhanced photostability in polymer solar cells. Sol. Energy Mater. Sol. Cells 179, 95–101 (2018)

    Article  CAS  Google Scholar 

  2. H.F. Guo, C.H. Ma, Z.W. Chen, X.G. Jia, Q.F. Cang, N.Y. Yuan, J.N. Ding, The fabrication of Cu2BaSnS4 thin film solar cells utilizing a maskant layer. Sol. Energy 181, 301–307 (2019)

    Article  CAS  Google Scholar 

  3. T.H. Bointon, S. Russo, M.F. Craciun, Is graphene a good transparent electrode for photovoltaics and display applications? IET Circuits Devices Syst. 9, 403–412 (2015)

    Article  Google Scholar 

  4. Y.C. Su, C.C. Chiou, V. Marinova, S.H. Lin, N. Bozhinov, B. Blagoev, T. Babeva, K.Y. Hsu, D.Z. Dimitrov, Atomic layer deposition prepared Al-doped ZnO for liquid crystal displays applications. Opt. Quantum Electron. 50, 205 (2018)

    Article  Google Scholar 

  5. S.S. Li, Y.L. Wang, B.J. Li, L.J. Huang, N.F. Ren, Copper/silver composite mesh transparent electrodes with low reflection for high-performance and low-voltage transparent heaters. J. Alloys Compd. 865, 158877 (2021)

    Article  CAS  Google Scholar 

  6. K.H. Kim, T.H. Lee, K.R. Son, T.G. Kim, Performance improvements in AlGaN-based ultraviolet light-emitting diodes due to electrical doping effects. Mater. Des. 153, 94–103 (2018)

    Article  CAS  Google Scholar 

  7. M.A. Haque, A.D. Sheikh, X. Guan, T. Wu, Metal oxides as efficient charge transporters in perovskite solar cells. Adv. Energy Mater. 7, 1602803 (2017)

    Article  Google Scholar 

  8. B.J. Li, G.Y. Yang, L.J. Huang, T.Y. Wang, N.F. Ren, Effects of BN layer on photoelectric properties and stability of flexible Al/Cu/ZnO multilayer thin film. Ceram. Int. 46, 14686–14696 (2020)

    Article  CAS  Google Scholar 

  9. L.G. De Arco, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson, C.W. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4, 2865–2873 (2010)

    Article  Google Scholar 

  10. T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J.-P. Simonato, D. Bellet, Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12, 6052–6075 (2016)

    Article  CAS  Google Scholar 

  11. Q. Zhou, J.-N. Kim, K.-W. Han, S.-W. Oh, S. Umrao, E.J. Chae, I.-K. Oh, Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-mesh hybrid electrode. Nano Energy 59, 120–128 (2019)

    Article  CAS  Google Scholar 

  12. M.-G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology. IEEE J. Sel. Top. Quantum Electron. 16, 1807–1802 (2010)

    Article  CAS  Google Scholar 

  13. M. Nagaraja, P. Raghu, H.M. Mahesh, J. Pattar, Structural, optical and urbach energy properties of ITO/CdS and ITO/ZnO/CdS bi-layer thin films. J. Mater. Sci. 32, 8976–8982 (2021)

    CAS  Google Scholar 

  14. T.Y. Wang, B.J. Li, N.F. Ren, L.J. Huang, H. Li, Influence of Al/Cu thickness ratio and deposition sequence on photoelectric property of ZnO/Al/Cu/ZnO multilayer film on PET substrate prepared by RF magnetron sputtering. Mater. Sci. Semicond. Process. 91, 73–80 (2019)

    Article  CAS  Google Scholar 

  15. Q. Wang, B.J. Li, F. Toor, H. Ding, Novel laser-based metasurface fabrication process for transparent conducting surfaces. J. Laser Appl. 31, 022505 (2019)

    Article  Google Scholar 

  16. Y.J. Li, M.Y. Wu, Y.T. Sun, S.H. Yu, High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure. J. Mater. Sci. 30, 13271–13279 (2019)

    CAS  Google Scholar 

  17. K. Feng, H. Zheng, D. Zhang, G. Yuan, L.-Y. Chang, Y. Chen, J. Zhang, Carbon nanotube supported PtOx nanoparticles with hybrid chemical states for efficient hydrogen evolution. J. Energy Chem. 58, 364–369 (2021)

    Article  Google Scholar 

  18. A. Kumar, C. Zhou, The race to replace tin-doped indium oxide: Which material will win? ACS Nano 4, 11–14 (2010)

    Article  CAS  Google Scholar 

  19. T. Kim, A. Canlier, G.H. Kim, J. Choi, M. Park, S.M. Han, Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Appl. Mater. Interfaces 5, 788–794 (2013)

    Article  CAS  Google Scholar 

  20. S.S. Li, Y.L. Wang, B.J. Li, L.J. Huang, N.F. Ren, Femtosecond laser selective ablation of Cu/Ag double-layer metal films for fabricating high-performance mesh-type transparent conductive electrodes and heaters. Opt. Commun. 483, 126661 (2021)

    Article  CAS  Google Scholar 

  21. C.-T. Wang, C.-C. Ting, P.-C. Kao, S.-R. Li, S.-Y. Chu, Investigation of surface energy, polarity, and electrical and optical characteristics of silver grids deposited via thermal evaporation method. Appl. Surf. Sci. 360, 349–352 (2016)

    Article  CAS  Google Scholar 

  22. M.-G. Kang, L.J. Guo, Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv. Mater. 19, 1391–1396 (2007)

    Article  CAS  Google Scholar 

  23. S. Kiruthika, R. Gupta, A. Anand, A. Kumar, G.U. Kulkarmi, Fabrication of oxidation-resistant metal wire network-based transparent electrodes by a spray-roll coating process. ACS Appl. Mater. Interfaces 7, 27215–27222 (2015)

    Article  CAS  Google Scholar 

  24. S.M. Yang, Y.S. Lee, Y. Jang, D. Byun, S.-H. Choa, Electromechanical reliability of a flexible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. Microelectron. Reliab. 65, 151–159 (2016)

    Article  CAS  Google Scholar 

  25. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee, S.H. Ko, Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS Nano 7, 5024–5031 (2013)

    Article  CAS  Google Scholar 

  26. F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, D. Puerto, P. Delaporte, I. Zergioti, Laser direct write micro-fabrication of large area electronics on flexible substrates. Appl. Surf. Sci. 374, 117–123 (2016)

    Article  CAS  Google Scholar 

  27. L.J. Huang, G.M. Zhang, H. Li, B.J. Li, Y.Y. Wang, N.F. Ren, Selective laser ablation and patterning on Ag thin films with width and depth control. J. Mater. Sci. 31, 4943–4955 (2020)

    CAS  Google Scholar 

  28. D. Paeng, J.-H. Yoo, J. Yeo, D. Lee, E. Kim, S.H. Ko, C.P. Grigoropoulos, Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation. Adv. Mater. 27, 2762–2767 (2015)

    Article  CAS  Google Scholar 

  29. R. Böhme, K. Zimmer, The influence of the laser spot size and the pulse number on laser-induced backside wet etching. Appl. Surf. Sci. 247, 256–261 (2005)

    Article  Google Scholar 

  30. Z.Y. Jia, K. Zhao, W. Liu, L.C. Ding, Localized and precision removal of metal coating on engineering plastics using NC laser milling. Opt. Precis. Eng. 24, 94–101 (2016)

    Article  Google Scholar 

  31. B.J. Li, H. Li, L.J. Huang, Y.L. Wang, S.S. Li, N.F. Ren, Improving edge quality and optical transmittance of Ag films on glass substrates by selective nanosecond pulsed laser ablation using various scanning methods. J. Mater. Sci. 30, 13729–13739 (2019)

    CAS  Google Scholar 

  32. L. Romoli, M.M.A. Khan, M. Valentini, Through-the-thickness selective laser ablation of ceramic coatings on soda-lime glass. Opt. Laser Technol. 90, 113–121 (2017)

    Article  CAS  Google Scholar 

  33. D. Barman, B.K. Sarma, Thin and flexible transparent conductors with superior bendability having Al-doped ZnO layers with embedded Ag nanoparticles prepared by magnetron sputtering. Vacuum 177, 109367 (2020)

    Article  CAS  Google Scholar 

  34. N. Formica, D.S. Ghosh, T.L. Chen, C. Eickhoff, I. Bruder, V. Pruneri, Highly stable Ag–Ni based transparent electrodes on PET substrates for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 107, 63–68 (2012)

    Article  CAS  Google Scholar 

  35. C.M. Silvestre, J.H. Hemmingsen, E.S. Dreier, J. Kehres, O. Hansen, Laser ablation of high-aspect-ratio hole arrays in tungsten for X-ray applications. Microelectron. Eng. 209, 60–65 (2019)

    Article  CAS  Google Scholar 

  36. H. Liu, W. Zhang, J.-T. Gau, Z. Shen, G. Zhang, Y. Ma, X. Wang, Microscale laser flexible dynamic forming of Cu/Ni laminated composite metal sheets. J. Manuf. Processes 35, 51–60 (2018)

    Article  Google Scholar 

  37. J. Lee, S. Kim, M. Lee, Micro-scale patterning of indium tin oxide film by spatially modulated pulsed Nd:YAG laser beam. Appl. Surf. Sci. 228, 9107–9111 (2012)

    Article  Google Scholar 

  38. H. Yu, H. Lee, J. Lee, H. Shin, M. Lee, Laser-assisted patterning of solution-processed oxide semiconductor thin film using a metal absorption layer. Microelectron. Eng. 88, 6–10 (2011)

    Article  CAS  Google Scholar 

  39. X. Jia, X. Zhao, Numerical study of material decomposition in ultrafast laser interaction with metals. Appl. Surf. Sci. 463, 780–790 (2010)

    Google Scholar 

  40. P. Umenne, V.V. Srinivasu, Femtosecond-laser fabrication of micron and sub-micron sized S-shaped constrictions on high Tc superconducting YBa2Cu3O7-x thin films: ablation and lithography issues. J. Mater. Sci. 28, 5817–5826 (2017)

    CAS  Google Scholar 

  41. H.-J. Kim, K.-W. Seo, Y.H. Kim, J. Choi, H.-K. Kim, Direct laser patterning of transparent ITO–Ag–ITO multilayer anodes for organic solar cells. Appl. Surf. Sci. 328, 215–221 (2015)

    Article  CAS  Google Scholar 

  42. C. Zhang, D.W. Zhao, D. Gu, H. Kim, T. Ling, Y.R. Wu, L.J. Guo, An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv. Mater. 26, 5696–5701 (2014)

    Article  CAS  Google Scholar 

  43. B.J. Li, Y.Y. Wang, L.J. Huang, H.D. Cao, Q. Wang, H. Ding, N.F. Ren, Influences of ultrasonic vibration on morphology and photoelectric properties of F-doped SnO2 thin films during laser annealing. Appl. Surf. Sci. 458, 940–948 (2018)

    Article  CAS  Google Scholar 

  44. L.J. Huang, L. Zhao, B.J. Li, Y. Zhang, Y.L. Wang, Y.Y. Wang, N.F. Ren, J. Song, Improving optical and electrical performances of aluminum-doped zinc oxide thin films with laser-etched grating structures. Ceram. Int. 47, 7994–8003 (2021)

    Article  CAS  Google Scholar 

  45. A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang, J. Tang, L.J. Guo, W.-D. Li, High-performance flexible transparent electrode with an embedded metal mesh fabricated by cost-effective solution process. Small 12, 3021–3030 (2016)

    Article  CAS  Google Scholar 

  46. J. van de Groep, P. Spinelli, A. Polman, Transparent conducting silver nanowire networks. Nano Lett. 12, 3138–3144 (2012)

    Article  Google Scholar 

  47. A.K. Pal, D.B. Mohan, Structural, morphological and optical properties of Ag-AgO thin films with the effect of increasing film thickness and annealing temperature. Opt. Mater. 48, 121–132 (2015)

    Article  CAS  Google Scholar 

  48. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976)

    Article  CAS  Google Scholar 

  49. B.J. Li, Y.Y. Wang, L.J. Huang, H.D. Cao, Q. Wang, N.F. Ren, H. Ding, Ultrasonic-vibration-assisted laser annealing of fluorine-doped tin oxide thin films for improving optical and electrical properties: overlapping rate optimization. Ceram. Int. 44, 22225–22234 (2018)

    Article  CAS  Google Scholar 

  50. Y. Jang, J. Kim, D. Byun, Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J. Phys. D 46, 155103 (2013)

    Article  Google Scholar 

  51. J. Jang, H.-G. Im, J. Jin, J. Lee, J.-Y. Lee, B.-S. Bae, A flexible and robust transparent conducting electrode platform using electroplated silver grid/surface-embedded silver nanowire hybrid structure. ACS Appl. Mater. Interfaces 8, 27035–27043 (2016)

    Article  CAS  Google Scholar 

  52. Y. Mouchaal, G. Louarn, A. Khelil, M. Morsli, N. Stephant, A. Bou, T. Abachi, L. Cattin, M. Makha, P. Torchio, J.C. Bernède, Broadening of the transmission range of dielectric/metal multilayer structures by using different metals. Vacuum 111, 32–41 (2015)

    Article  CAS  Google Scholar 

  53. T. Winkler, H. Schmidt, H. Flügge, F. Nikolayzik, I. Baumann, S. Schmale, T. Weimann, P. Hinze, H.-H. Johannes, T. Rabe, S. Hamwi, T. Riedl, W. Kowalsky, Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes. Org. Electron. 12, 1612–1618 (2011)

    Article  CAS  Google Scholar 

  54. G. Fan, J. Hu, B. Yang, L. Jia, X. Liu, S. Liu, Ag nanoparticle enhanced flexible thin-film silicon solar cells. J. Nanosci. Nanotechnol. 17, 3689–3694 (2017)

    Article  CAS  Google Scholar 

  55. J.-A. Jeong, J. Kim, H.-K. Kim, Ag grid/ITO hybrid transparent electrodes prepared by inkjet printing. Sol. Energy Mater. Sol. Cells 95, 1974–1978 (2011)

    Article  CAS  Google Scholar 

  56. M.K. Roul, J. Beckford, B. Obasogie, K. Yarbrough, M. Bahoura, A.K. Pradhan, High-performance transparent film heater using random mesowire silver network. J. Mater. Sci. 29, 21088–21096 (2018)

    CAS  Google Scholar 

  57. S.X. Jiang, D.G. Miao, J.T. Xu, S.M. Shang, X. Ning, P. Zhu, Preparation and characterization of shielding textiles to prevent infrared penetration with Ag thin films. J. Mater. Sci. 28, 3542–3547 (2017)

    CAS  Google Scholar 

  58. A. Kuroda, R. Satoh, Y. Iwata, K. Yokota, K. Fujimoto, S. Ura, K. Kintaka, Development of Ag alloy thin film with both high reflectance and adhesion for high density opt-electronic module. IEEE Trans. Compon. Packag. Technol. 30, 302–308 (2007)

    Article  CAS  Google Scholar 

  59. Y.L. Wang, B.J. Li, S.S. Li, H. Li, L.J. Huang, N.F. Ren, Parameter optimization in femtosecond pulsed laser etching of fluorine-doped tin oxide films. Opt. Laser Technol. 116, 162–170 (2019)

    Article  CAS  Google Scholar 

  60. G. Tang, A. Abdolvand, Laser-assisted highly organized structuring of copper. Opt. Mater. Express 1, 1425–1432 (2011)

    Article  CAS  Google Scholar 

  61. P. Woerner, D. Blood, D. Mills, M. Sheplak, W.S. Oates, Quantifying the uncertainty of picosecond pulsed laser ablation in sapphire. J. Manuf. Processes 35, 687–699 (2018)

    Article  Google Scholar 

  62. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers. Opt. Lasers Eng. 119, 18–25 (2019)

    Article  Google Scholar 

  63. B.J. Li, G.Y. Yang, L.J. Huang, W. Zu, N.F. Ren, Performance optimization of SnO2: F thin films under quasi-vacuum laser annealing with covering a transparent PET sheet: a study using processing map. Appl. Surf. Sci. 509, 145334 (2020)

    Article  CAS  Google Scholar 

  64. I.-C. Chen, B.-Y. Cheng, W.-C. Ke, C.-H. Kuo, L.-C. Chang, Improved light reflectance and thermal stability of Ag-based ohmic contacts on p-type GaN with La additive. Superlattices Microstruct. 57, 51–57 (2013)

    Article  CAS  Google Scholar 

  65. Y.Y. Wang, B.J. Li, L.J. Huang, H.D. Cao, N.F. Ren, Photoelectric property enhancement of Ag/FTO thin films by fabricating antireflection grating structures using ultrasonic-vibration-assisted laser irradiation. Appl. Surf. Sci. 541, 148449 (2021)

    Article  CAS  Google Scholar 

  66. D.S. Ghosh, T.L. Chen, V. Pruneri, High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Appl. Phys. Lett. 96, 041109 (2010)

    Article  Google Scholar 

  67. J. Kang, Y. Jang, Y. Kim, S. Cho, J. Suhr, B.H. Hong, J. Choi, D. Byun, An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale 7, 6567–6573 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51805220 and 61405078).

Author information

Authors and Affiliations

Authors

Contributions

QX: formal analysis and writing—original draft. BL: conceptualization, writing—review and editing, supervision, and project administration. LH: validation, resources, and funding acquisition. HL: formal analysis and investigation. YW: validation.

Corresponding authors

Correspondence to Bao-jia Li or Li-jing Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Li, Bj., Huang, Lj. et al. Fabrication and performance improvement of Ag grid transparent conducting films using selective laser ablation. J Mater Sci: Mater Electron 33, 4764–4781 (2022). https://doi.org/10.1007/s10854-021-07666-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07666-9

Navigation