Skip to main content
Log in

Selective laser ablation and patterning on Ag thin films with width and depth control

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver (Ag) films were deposited on glass substrates by radio frequency (RF) magnetron sputtering and then ablated by a 532 nm nanosecond pulsed laser. The effects of laser fluence and defocusing amount on the width and depth of laser-ablated grooves on 100- and 600-nm-thick Ag films were systematically investigated under single- and multi-scan ablation. The results suggested that the Ag films could be successfully removed from the substrate owing to laser-induced thermoelastic force or vaporization. It was confirmed that laser fluence and defocusing amount played very important roles in controlling the width and depth of the laser-ablated grooves. In the present work, grooves with widths ranging from 53 to 196 μm and depths ranging from 56 to 196 nm were obtained on 100-nm-thick Ag films by single-scan laser ablation, and laser ablation or removal with controllable depths was realized on 600-nm-thick Ag films by adopting single- or multi-scan (i.e., scanning numbers of 1–6). Furthermore, square spiral Ag patterns were successfully obtained by single- and multi-scan laser ablation and showed good electrical conductivity in a simple circuit. This work may have great potential applications in various fields that demand width and depth control of laser ablation/removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Heise, M. Englmaier, C. Hellwig, T. Kuznicki, S. Sarrach, H.P. Huber, Laser ablation of thin molybdenum films on transparent substrates at low fluences. Appl. Phys. A 102, 173–178 (2011)

    CAS  Google Scholar 

  2. K. Trabelsi, A. Hajjaji, I. Ka, M. Gaidi, B. Bessais, M.A. EI Khakani, Optoelectronic and photocatalytic properties of in situ platinum-doped TiO2 films deposited by means of pulsed laser ablation technique. J. Mater. Sci. Mater. Electron. 28, 3317–3324 (2017)

    CAS  Google Scholar 

  3. H. Liu, Z. Shen, X. Wang, H. Wang, M. Tao, Numerical simulation and experimentation of a novel micro scale laser high speed punching. Int. J. Mach. Tool Manuf. 50, 491–494 (2010)

    Google Scholar 

  4. S. Liébana, L.J. Jones, G.A. Drago, R.W. Pittson, D. Liu, W. Perrie, J.P. Hart, Design and development of novel screen-printed microelectrode and microbiosensor arrays fabricated using ultrafast pulsed laser ablation. Sens. Actuators B 231, 384–392 (2016)

    Google Scholar 

  5. Y. Wang, B. Li, S. Li, H. Li, L. Huang, N. Ren, Parameter optimization in femtosecond pulsed laser etching of fluorine-doped tin oxide films. Opt. Laser Technol. 116, 162–170 (2019)

    CAS  Google Scholar 

  6. N. Farid, H. Chan, D. Milne, A. Brunton, G.M. O’Connor, Stress assisted selective ablation of ITO thin film by picosecond laser. Appl. Surf. Sci. 427, 499–504 (2018)

    CAS  Google Scholar 

  7. J. Hwang, H.K. Choi, J. Moon, J.W. Shin, C.W. Joo, J.H. Han, D.H. Cho, J.W. Huh, S.Y. Choi, J.I. Lee, H.Y. Chu, Blue fluorescent organic light emitting diodes with multilayered graphene anode. Mater. Res. Bull. 47, 2796–2799 (2012)

    CAS  Google Scholar 

  8. K. Zhao, Z. Jia, J. Ma, W. Liu, L. Wang, Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface. Opt. Lasers Eng. 63, 58–69 (2014)

    Google Scholar 

  9. B.K. Lee, E. Jung, S.H. Kim, D.C. Moon, S.S. Lee, B.K. Park, J.H. Hwang, T.M. Chung, C.G. Kim, K.S. Ana, Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition. Mater. Res. Bull. 47, 3052–3055 (2012)

    CAS  Google Scholar 

  10. K.H. Choi, S. Jeon, H.K. Kim, A comparison of Ga:ZnO and Ga:ZnO/Ag/Ga:ZnO source/drain electrodes for In–Ga–Zn–O thin film transistors. Mater. Res. Bull. 47, 2915–2918 (2012)

    CAS  Google Scholar 

  11. L.J. Huang, B.J. Li, H.D. Cao, W. Zu, N.F. Ren, H. Ding, Influence of annealing temperature on formation and photoelectric properties of AZO nanosheet-coated FTO-based films. J. Mater. Sci. Mater. Electron. 28, 4706–4712 (2017)

    CAS  Google Scholar 

  12. B.J. Li, Y.Y. Wang, L.J. Huang, Q. Wang, H. Ding, N.F. Ren, Influences of ultrasonic vibration on morphology and photoelectric properties of F-doped SnO2 thin films during laser annealing. Appl. Surf. Sci. 458, 940–948 (2018)

    CAS  Google Scholar 

  13. G. Lazzini, L. Romoli, F. Tantussi, F. Fuso, Nanostructure patterns on stainless-steel upon ultrafast laser ablation with circular polarization. Opt. Laser Technol. 107, 435–442 (2018)

    CAS  Google Scholar 

  14. X.Z. Xie, W.J. Hong, J.Y. Long, X. Wei, W. Hu, Q.L. Ren, Laser processing high aspect ratio groove wick for improving the thermal performance of flat micro heat pipe. J. Laser Micro Nanoeng. 14, 59–65 (2019)

    CAS  Google Scholar 

  15. Y. Jin, W. Perrie, P. Harris, O.J. Allegre, K.J. Abrams, G. Dearden, Patterning of aluminium thin film on polyethylene terephthalate by multi-beam picosecond laser. Opt. Lasers Eng. 74, 67–74 (2015)

    Google Scholar 

  16. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, Laser lift-off initiated by direct induced ablation of different metal thin films with ultra-short laser pulses. J. Phys. D 45, 315303–315310 (2012)

    Google Scholar 

  17. Y. Shi, Z. Wu, L. Du, S. Li, Y. Jiang, Effect of the thickness of Si film on Si/Se film doped silicon prepared by femtosecond laser. J. Mater. Sci. Mater. Electron. 29, 4526–4532 (2018)

    CAS  Google Scholar 

  18. R. Chen, Z. Hu, Y. Ye, J. Zhang, Z. Shi, Y. Hua, An anti-reflective 1D rectangle grating on GaAs solar cell using one-step femtosecond laser fabrication. Opt. Lasers Eng. 93, 109–113 (2017)

    Google Scholar 

  19. H. Zhu, Z. Zhang, J. Xu, K. Xu, Y. Ren, An experimental study of micro-machining of hydroxyapatite using an ultrashort picosecond laser. Precis. Eng. 54, 154–162 (2018)

    Google Scholar 

  20. B.J. Li, Y.Y. Wang, L.J. Huang, H.D. Cao, Q. Wang, N.F. Ren, H. Ding, Ultrasonic-vibration-assisted laser annealing of fluorine-doped tin oxide thin films for improving optical and electrical properties: overlapping rate optimization. Ceram. Int. 44, 22225–22234 (2018)

    CAS  Google Scholar 

  21. A. Singh, N.B. Dahotre, Laser in-situ synthesis of mixed carbide coating on steel. J. Mater. Sci. 39, 4553–4560 (2004)

    CAS  Google Scholar 

  22. B.J. Li, G.Y. Yang, L.J. Huang, W. Zu, H. Li, Y.L. Wang, S.S. Li, N.F. Ren, Surface morphology and photoelectric properties of FTO ceramic thin films under a simple transparent cover-assisted laser annealing. Mater. Res. Bull. 108, 151–155 (2018)

    CAS  Google Scholar 

  23. P. Umenne, V.V. Srinivasu, Femtosecond-laser fabrication of micron and sub-micron sized S-shaped constrictions on high Tc superconducting YBa2Cu3O7−x thin films: ablation and lithography issues. J. Mater. Sci. Mater. Electron. 28, 5817–5826 (2017)

    CAS  Google Scholar 

  24. T. Canel, İ. Bağlan, T. Sinmazcelik, Mathematical modelling of laser ablation of random oriented short glass fiber reinforced polyphenylene sulphide (PPS) polymer composite. Opt. Laser Technol. 115, 481–486 (2019)

    CAS  Google Scholar 

  25. B. Li, H. Li, L. Huang, Y. Wang, S. Li, N. Ren, Improving edge quality and optical transmittance of Ag films on glass substrates by selective nanosecond pulsed laser ablation using various scanning methods. J. Mater. Sci. Mater. Electron. 30, 13729–13739 (2019)

    CAS  Google Scholar 

  26. H. Lee, H. Shin, Y. Jeong, J. Moon, M. Lee, Laser-direct photoetching of metal thin film for the electrode of transistor. Appl. Phys. Lett. 95, 2123 (2009)

    Google Scholar 

  27. F. Abrinaei, M. Shirazi, Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation. J. Mater. Sci. Mater. Electron. 28, 17541–17550 (2017)

    CAS  Google Scholar 

  28. H. Yoo, H. Shin, M. Lee, Direct patterning of double-layered metal thin films by a pulsed Nd:YAG laser beam. Thin Solid Films 518, 2775–2778 (2010)

    CAS  Google Scholar 

  29. M.A. Morsi, A. Rajeh, A.A. Menazea, Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J. Mater. Sci. Mater. Electron. 30, 2693–2705 (2019)

    CAS  Google Scholar 

  30. B. Zheng, G. Jiang, W. Wang, X. Mei, F. Wang, Surface ablation and threshold determination of AlCu4SiMg aluminum alloy in picosecond pulsed laser micromachining. Opt. Laser Technol. 94, 267–278 (2017)

    CAS  Google Scholar 

  31. F. Garrelie, F. Bourquard, A.S. Loir, C. Donnet, J.P. Colomiber, Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping. Opt. Laser Technol. 78, 42–51 (2015)

    Google Scholar 

  32. C. Leone, S. Genna, Heat affected zone extension in pulsed Nd:YAG laser cutting of CFRP. Composites B 40, 174–182 (2018)

    Google Scholar 

  33. L.J. Huang, B.J. Li, N.F. Ren, Enhancing optical and electrical properties of Al-doped ZnO coated polyethylene terephthalate substrates by laser annealing using overlap rate controlling strategy. Ceram. Int. 42, 7246–7252 (2016)

    CAS  Google Scholar 

  34. B.J. Li, H. Li, L.J. Huang, H.D. Cao, W. Zu, N.F. Ren, H. Ding, X. Kong, J.L. Zhang, Performance optimization of fluorine-doped tin oxide thin films by introducing ultrasonic vibration during laser annealing. Ceram. Int. 43, 7329–7337 (2017)

    CAS  Google Scholar 

  35. A. Rodríguez, M.C. Morant-Miñana, A. Dias-Ponte, M. Martínez-Calderón, M. Gómez-Aranzadi, S.M. Olaizola, Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films. Appl. Surf. Sci. 351, 135–139 (2015)

    Google Scholar 

  36. A.S. Sonal, A. Aggarwal, Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation. J. Non-Cryst. Solids 485, 57–65 (2018)

    CAS  Google Scholar 

  37. H.Y. Kim, J.W. Yoon, W.S. Choi, K.R. Kim, S.H. Cho, Ablation depth control with 40 nm resolution on ITO thin films using a square, flat top beam shaped femtosecond NIR laser. Opt. Lasers Eng. 84, 44–50 (2016)

    Google Scholar 

  38. H. Yoo, H. Shin, B. Sim, S. Kim, M. Lee, Parallelized laser-direct patterning of nanocrystalline metal thin films by use of a pulsed laser-induced thermo-elastic force. Nanotechnology 20, 245301 (2009)

    Google Scholar 

  39. A. Rodríguez, A. Arriola, T. Tavera, N. Pérez, S.M. Olaizola, Enhanced depth control of ultrafast laser micromachining of microchannels in soda-lime glass. Microelectron. Eng. 98, 672–675 (2012)

    Google Scholar 

  40. F. Ma, H. Zhang, K.K.B. Hon, Q. Gong, An optimization approach of selective laser sintering considering energy consumption and material cost. J. Clean. Prod. 199, 529–537 (2018)

    Google Scholar 

  41. Y.H. Liu, J.L. Xu, S. Shen, X.L. Cai, L.S. Che, S.D. Wang, High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J. Mater. Chem. A 5, 9032–9041 (2017)

    CAS  Google Scholar 

  42. M. Wu, S. Yu, L. He, L. Yang, W. Zhang, High quality transparent conductive Ag-based barium stannate multilayer flexible thin films. Sci. Rep. 7, 1–8 (2017)

    Google Scholar 

  43. B.I. Noh, J.W. Yoon, K.S. Kim, S. Kang, S.B. Jung, Electrochemical migration of directly printed Ag electrodes using Ag paste with epoxy binder. Microelectron. Eng. 103, 1–6 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant Nos. 51805220 and 61405078), the Jiangsu University Study-Abroad Fund (Reference No. UJS-2017–013) and the Jiangsu Government Scholarship for Overseas Studies (Reference No. JS-2016–095). The authors would like to thank the support of the Young Backbone Teacher Cultivating Project of Jiangsu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-jia Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Lj., Zhang, Gm., Li, H. et al. Selective laser ablation and patterning on Ag thin films with width and depth control. J Mater Sci: Mater Electron 31, 4943–4955 (2020). https://doi.org/10.1007/s10854-020-03061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03061-y

Navigation