Skip to main content
Log in

Fabrication and performance of full textile-based flexible piezoresistive pressure sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the development of wearable devices, wearable sensing systems for detecting human movement have attracted considerable attention of academic and industrial fields. Among them, the piezoresistive pressure sensor with high sensitivity, excellent stability, low cost, and large-area fabrication process is one of the research hotspots. In this paper, we designed a full textile piezoresistive pressure sensor with an interdigitated printed silver paste cotton fabric electrode as a bottom and a piezoresistive layer of silver nanowire-coated cotton fabric as a top electrode and the bottom and the top electrodes were encapsulated by a VHB adhesive film. Further the performances of the pressure sensor were investigated. The results show that the piezoresistive pressure sensor achieves high sensitivity of 2.56 × 104–4.42 × 106 Pa−1 when the sheet resistance of the piezoresistive layer changes from 1.51–0.09 Ω sq−1, the outstanding switching ratio of 107, the fast response time (6 ms), and relaxation properties (4 ms) to instantaneous pressure of 50 Pa. The detect changes in the signal of repeated bending of fingers and wrists show excellent repeatability and detection performance, suggesting its potential application in wearable controller and motion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing is not applicable. No new data were created or analyzed in this study. Data sharing is not applicable to this article.

References

  1. S. Zhang, Y. Liu, J. Hao, G.G. Wallace, S. Beirne, J. Chen. Adv. Fun. Mater. 2103092, 1–33 (2021)

    Google Scholar 

  2. C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Adv. Fun. Mater. 22, 1–20 (2021)

    Google Scholar 

  3. A. Vorobjova, D. Tishkevich, D. Shimanovich, M. Zdorovets, A. Kozlovskiy, T. Zubar, D. Vinnik, M. Dong, S. Trukhanov, A. Trukhanov, V. Fedosyuk, Nanomaterials 10(1), 173 (2020)

    Article  CAS  Google Scholar 

  4. L. Du, Microprocess. Microsyst. 82, 103899 (2021)

    Article  Google Scholar 

  5. J. Abanah Shirley, S. Esther Florence, B.S. Sreeja, G. Padmalaya, S. Radha, J. Mater. Sci. Mater. Electron. 31(19), 16519 (2020)

    Article  Google Scholar 

  6. G. Wang, Z. Wang, Y. Wu, Y. Luo, Q. Tan, L. Zhao, Y. Zhao, D. Sun, D. Wu, Org. Electron. 86, 105926 (2020)

    Article  CAS  Google Scholar 

  7. I. Ahmed, J. Hassan, Zu, Adv. Eng. Mater. 20(8), 1700997 (2018)

    Article  Google Scholar 

  8. Z. Wang, C. Yang, F. Jun. J. Mater. Chem. B .8(16), 3437–3459 (2020)

    Article  Google Scholar 

  9. P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, J. Mater. Sci. Mater. Electron. 29(18), 15946–15956 (2018)

    Article  CAS  Google Scholar 

  10. S. Han, Q. Wan, K. Zhou, A. Yan, Z. Lin, B. Shu, C. Liu, ACS Appl. Nano Mater. 4(8), 8273–8281 (2021)

    Article  CAS  Google Scholar 

  11. J. Wang, P. Cui, Y. Ge, X. Liu, N. Xuan, G. Gu, G. Cheng, Z. Du, Nano Energy 89(Part A), 106320 (2021)

    Article  CAS  Google Scholar 

  12. C. Ashok, D.P. Sarati, Y. Hyosang, Org. Electron. 62, 581–590 (2018)

    Article  Google Scholar 

  13. S.J. Lim, J.H. Bae, J.H. Han, Smart Mater. Struct. 29(5), 055010 (2020)

    Article  CAS  Google Scholar 

  14. L. Possanzini, M. Tessarolo, L. Mazzocchetti, E.G. Campari, B. Fraboni, Sensors 19(21), 4686 (2019)

    Article  CAS  Google Scholar 

  15. B.Q. Nie, R. Huang, T. Yao, Y.Q. Zhang, Y.H. Miao, C.R. Liu, J. Liu, X.J. Chen, Adv. Funct. Mater. 29(22), 1808786 (2019)

    Article  Google Scholar 

  16. K. Qi, H. Wang, X. You, X. Tao, M. Li, Y. Zhou, Y. Zhang, J. He, W. Shao, S. Cui, J. Colloid Interface Sci. 561, 93–103 (2020)

    Article  CAS  Google Scholar 

  17. J.Y. Lim, Y. Jee, J.H. Ko, S.J. Lim, J.H. Bae, S.J. Jang, Fibers Polym. 19(12), 2622–2630 (2018)

    Article  Google Scholar 

  18. N.Q. Luo, J. Zhang, X.R. Ding, Z.Q. Zhou, Q. Zhang, Y.T. Zhang, S.C. Chen, J.L. Hu, Adv. Mater. Technol. 3(1), 1700222 (2018)

    Article  Google Scholar 

  19. Z. Zhou, Y. Li, J. Cheng, S. Chen, R. Hu, X. Yan, X. Liao, C. Xu, J. Yua, L. Li, J. Mater. Chem. C 6(8), 13120–13127 (2013)

    Google Scholar 

  20. Y. Lian, H. Yu, M. Wang, X. Yang, H. Zhang, Nanoscale Res. Lett. 15, 70 (2020)

    Article  CAS  Google Scholar 

  21. L. Possanzini, M. Tessarolo, L. Mazzocchetti, E.G. Campari, B. Fraboni, Sensors 19(1–15), 4686 (2019)

    Article  CAS  Google Scholar 

  22. H.H. Zhang, Z.Z. Shi, M.Y. Zhou, F. Wang, Q.Y. Xia, Y. Qiao, L. Yu, Z.S. Lu, Smart Mater. Struct. 27(10), 105027 (2018)

    Article  Google Scholar 

  23. M. Liu, X. Pu, C. Jiang, T. Liu, X. Huang, L. Chen, C. Du, J. Sun, W. Hu, Z.L. Wang, Adv. Mater. 29, 1703700 (2017)

    Article  Google Scholar 

  24. A. Ahmed, Y.M. Jia, Y. Huang, N.A. Khoso, H. Deb, Q.G. Fan, J.Z. Shao,  J. Mater. Sci. Mater. Electron. 30(15), 14007–14021 (2019)

    Article  CAS  Google Scholar 

  25. M. Liu, S. Zhang, S. Liu, S. Cao, S. Wang, L. Bai, M. Sang, S. Xuan, W. Jiang, X. Gong, Composites  A 126, 105612 (2019)

    Article  CAS  Google Scholar 

  26. Z. Zhao, Q. Huang, C. Yan, Y. Liu, X. Zeng, X. Wei, Y. Hu, Z. Zheng, Nano Energy. 70, 104528 (2020)

    Article  CAS  Google Scholar 

  27. H. Dai, E.T. Thostenson, ACS Appl. Mater. Interfaces 11, 48370–48380 (2019)

    Article  CAS  Google Scholar 

  28. R. Wu, L. Ma, A. Patil, C. Hou, S. Zhu, X. Fan, H. Lin, W. Yu, W. Guo, X.Y. Liu, ACS Appl. Mater. Interfaces 11, 33336–33346 (2019)

    Article  CAS  Google Scholar 

  29. A. Gurarslan, B. Ozdemir, I.H. Bayat, M.B. Yelten, G. Karabulut Kurt, J. Eng. Fiber Fabr. 2019(1–8), 14 (2019)

    Google Scholar 

  30. H. Zhang, Y. Zhang, J. Zhang, X. Ye, Y. Li, P. Wang, Polym. Compos. 42(5), 2523–2530 (2021)

    Article  CAS  Google Scholar 

  31. Y.H. Wang, X. Yang, D.X. Du, X.F. Zhang, J. Mater. Sci. Mater. Electron. 30, 13238–13246 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Grant for National Natural Science Foundation of China (No. 61671140), Zhongshan Science and Technology Projects (No. 2019B2016), and Youth Innovation Talent Project and Special Projects in Key Areas for the Universities of Guangdong Province (No. 2019KQNCX190, 2020ZDZX2027, 2021ZDZX1009, 2021A0101180005). The innovation team of colleges and universities in Guangdong Province (2020KCXTD030).

Author information

Authors and Affiliations

Authors

Contributions

YW and KL led and designed the experiment and wrote the manuscript; CL, XW, CH, XY, HL, and SW performed the experiments; CL and XW measured the microstructures of the samples; YW wrote and reviewed and edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to K. Lin or Y. Wang.

Ethics declarations

Conflict of interest

The authors report no conflicting interest in any capacity, competing, or financial.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, C., Wu, X., Huang, C. et al. Fabrication and performance of full textile-based flexible piezoresistive pressure sensor. J Mater Sci: Mater Electron 33, 4755–4763 (2022). https://doi.org/10.1007/s10854-021-07665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07665-w

Navigation