Skip to main content
Log in

High-performance a-IGZO-based flexible TTFT with stacked dielectric layers via ultrathin high-κ SrTiO3 buffer layer grown on HfO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, ITO-coated PET was used as the substrate to create a flexible and transparent structure. a-IGZO (amorphous InGaZnO4) is preferred for the semiconductor layer in order to keep the related TFT device stable at high performance for a long term. In addition, as an innovative method to increase the electrical performance of this TFT, the HfO2 dielectric layer surface has been modified with SrTiO3. All layers of the relevant flexible transparent thin-film transistor (TTFT) structure were produced by the sputtering method. In this work, fabricated TFT devices were evaluated in terms of the structural, morphological, chemical, and optical properties using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron (XPS), and UV–Vis spectroscopy, respectively. In addition, in order to examine the long-term electrical performance of the related TFT devices, the relevant products were put into the reliability test and their electrical performances before and after the tests were determined. The average optical transmittance values of the developed TFT devices in the wavelength range of 300–700 nm were determined as 79.80%. Before the reliability tests, the maximum fet mobility value was determined as 26.82cm2/Vs. After the reliability tests, it was seen that this value decreased to only 26.27cm2/Vs. The fact that the fet mobility value is so high after long-term stability tests shows that the relevant flexible and transparent TFT device can be used to drive LC (liquid crystal) and OLED (organic light emitting diode) subpixels in LCD and OLED screen technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during the current study are not publicly available because this study was carried out by VESTEL ELECTRONIC Inc. and the copyright of the inventions developed from this work belongs to VESTEL company. However, if the relevant editors or reviewers of this journal want to see the data, the data can be shared with these people, provided that it is not shared with third parties. In case the data are shared with third parties, legal action will be initiated by VESTEL company.

References

  1. J.S. Meena, M.-C. Chu, C.-S. Wu, F.-C. Chang, F.-H. Ko, Org. Electron. 12, 1414 (2011). https://doi.org/10.1016/j.orgel.2011.05.011

    Article  CAS  Google Scholar 

  2. H. Chen, Y. Cao, J. Zhang, C. Zhou, Nat. Commun. 5, 4097 (2014). https://doi.org/10.1038/ncomms5097

    Article  CAS  Google Scholar 

  3. G.A. Salvatore, N. Munzenrieder, T. Kinkeldei et al., Nat. Commun. 5, 2982 (2014). https://doi.org/10.1038/ncomms3982

    Article  CAS  Google Scholar 

  4. S. Lee, J. Shin, J. Jang, Adv. Func. Mater. (2017). https://doi.org/10.1002/adfm.201604921

    Article  Google Scholar 

  5. Y. Choi, C.K. Song, Org. Electron. 52, 195 (2018). https://doi.org/10.1016/j.orgel.2017.10.030

    Article  CAS  Google Scholar 

  6. G. Han, X. Wang, J. Zhang et al., Org. Electron. 52, 213 (2018). https://doi.org/10.1016/j.orgel.2017.10.031

    Article  CAS  Google Scholar 

  7. J.W. Jo, K.H. Kim, J. Kim, S.G. Ban, Y.H. Kim, S.K. Park, ACS Appl. Mater. Interfaces 10, 2679 (2018). https://doi.org/10.1021/acsami.7b10786

    Article  CAS  Google Scholar 

  8. A. Liu, H. Zhu, H. Sun, Y. Xu, Y.Y. Noh, Adv. Mater. (2018). https://doi.org/10.1002/adma.201706364

    Article  Google Scholar 

  9. J. Jang, D.S. Dolzhnikov, W. Liu, S. Nam, M. Shim, D.V. Talapin, Nano Lett. 15, 6309 (2015). https://doi.org/10.1021/acs.nanolett.5b01258

    Article  CAS  Google Scholar 

  10. B. Kim, S. Jang, P.L. Prabhumirashi, M.L. Geier, M.C. Hersam, A. Dodabalapur, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4819465

    Article  Google Scholar 

  11. G. He, L. Zhu, Z. Sun, Q. Wan, L. Zhang, Prog. Mater. Sci. 56, 475 (2011). https://doi.org/10.1016/j.pmatsci.2011.01.012

    Article  CAS  Google Scholar 

  12. Y. Aoki, T. Kunitake, Adv. Mater. 16, 118 (2004). https://doi.org/10.1002/adma.200305731

    Article  CAS  Google Scholar 

  13. H.-H. Hsu, C.-Y. Chang, C.-H. Cheng, Phys. Status Solidi (RRL) 7, 285 (2013). https://doi.org/10.1002/pssr.201307047

    Article  CAS  Google Scholar 

  14. L. Xu, N. Gao, Z. Zhang, L.-M. Peng, Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5039967

    Article  Google Scholar 

  15. E. Carlos, R. Branquinho, A. Kiazadeh et al., ACS Appl. Mater. Interfaces 9, 40428 (2017). https://doi.org/10.1021/acsami.7b11752

    Article  CAS  Google Scholar 

  16. J.H. Kim, U.K. Kim, Y.J. Chung, C.S. Hwang, Phys. Status Solidi (RRL) 5, 178 (2011). https://doi.org/10.1002/pssr.201105090

    Article  CAS  Google Scholar 

  17. Y. Ko, S. Bang, S. Lee, S. Park, J. Park, H. Jeon, Phys. Status Solidi (RRL) 5, 403 (2011). https://doi.org/10.1002/pssr.201105340

    Article  CAS  Google Scholar 

  18. T.S. Kang, K.S. Yoon, G.H. Baek et al., Adv. Electron. Mater. (2017). https://doi.org/10.1002/aelm.201600452

    Article  Google Scholar 

  19. E. W. Forsythe, B. Leever, M. Gordon, et al. IEDM. (2016). https://doi.org/10.1109/IEDM.2015.7409731

    Article  Google Scholar 

  20. M. Mativenga, D. Geng, B. Kim, J. Jang, ACS Appl. Mater. Interfaces 7, 1578 (2015). https://doi.org/10.1021/am506937s

    Article  CAS  Google Scholar 

  21. X. Xiao, L. Zhang, Y. Shao, X. Zhou, H. He, S. Zhang, ACS Appl. Mater. Interfaces 10, 25850 (2018). https://doi.org/10.1021/acsami.7b13211

    Article  CAS  Google Scholar 

  22. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004). https://doi.org/10.1038/nature03090

    Article  CAS  Google Scholar 

  23. M. Esro, G. Vourlias, C. Somerton, W.I. Milne, G. Adamopoulos, Adv. Func. Mater. 25, 134 (2015). https://doi.org/10.1002/adfm.201402684

    Article  CAS  Google Scholar 

  24. P. Heremans, A.K. Tripathi, A. de Jamblinne de Meux et al., Adv. Mater. 28, 4266 (2016). https://doi.org/10.1002/adma.201504360

    Article  CAS  Google Scholar 

  25. G. Gutierrez-Heredia, O. Rodriguez-Lopez, A. Garcia-Sandoval, W.E. Voit, Adv. Electron. Mater. (2017). https://doi.org/10.1002/aelm.201700221

    Article  Google Scholar 

  26. N. Münzenrieder, G. Cantarella, C. Vogt et al., Adv. Electron. Mater. (2015). https://doi.org/10.1002/aelm.201400038

    Article  Google Scholar 

  27. P. Gogoi, R. Saikia, D. Saikia, R.P. Dutta, S. Changmai, Phys. Status Solidi 212, 826 (2015). https://doi.org/10.1002/pssa.201431605

    Article  CAS  Google Scholar 

  28. E. Fortunato, R. Barros, P. Barquinha et al., Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3469939

    Article  Google Scholar 

  29. L.Y. Liang, Z.M. Liu, H.T. Cao et al., J. Electrochem. Soc. (2010). https://doi.org/10.1149/1.3385390

    Article  Google Scholar 

  30. H.-N. Lee, H.-J. Kim, C.-K. Kim, Jpn. J. Appl. Phys. (2010). https://doi.org/10.1143/jjap.49.020202

    Article  Google Scholar 

  31. D. Khim, Y.H. Lin, S. Nam et al., Adv. Mater. (2017). https://doi.org/10.1002/adma.201605837

    Article  Google Scholar 

  32. N. Itagaki, T. Iwasaki, H. Kumomi et al., Phys. Status Solidi 205, 1915 (2008). https://doi.org/10.1002/pssa.200778909

    Article  CAS  Google Scholar 

  33. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.1843286

    Article  Google Scholar 

  34. J.S. Park, W.-J. Maeng, H.-S. Kim, J.-S. Park, Thin Solid Films 520, 1679 (2012). https://doi.org/10.1016/j.tsf.2011.07.018

    Article  CAS  Google Scholar 

  35. K.P. McKenna, A.L. Shluger, Nat. Mater. 7, 859 (2008). https://doi.org/10.1038/nmat2289

    Article  CAS  Google Scholar 

  36. J.F. Cordaro, Y. Shim, J.E. May, J. Appl. Phys. 60, 4186 (1986). https://doi.org/10.1063/1.337504

    Article  CAS  Google Scholar 

  37. A. Bolognesi, M. Berliocchi, M. Manenti et al., IEEE Trans. Electron Devices 51, 1997 (2004). https://doi.org/10.1109/ted.2004.838333

    Article  CAS  Google Scholar 

  38. V.K. Gueorguiev, T.E. Ivanov, C.A. Dimitriadis, L.I. Popova, S.K. Andreev, Microelectron. J. 31, 207 (2000). https://doi.org/10.1016/S0026-2692(99)00137-8

    Article  CAS  Google Scholar 

  39. M. Kimura, T. Yasuhara, K. Harada, D. Abe, S. Inoue, T. Shimoda, J. SID 13, 1027 (2005). https://doi.org/10.1889/1.2150372

    Article  CAS  Google Scholar 

  40. S. Rudenja, A. Minko, D.A. Buchanan, Appl. Surf. Sci. 257, 17 (2010). https://doi.org/10.1016/j.apsusc.2010.06.012

    Article  CAS  Google Scholar 

  41. B. Psiuk, J. Szade, K. Szot, Vacuum 131, 14 (2016). https://doi.org/10.1016/j.vacuum.2016.05.026

    Article  CAS  Google Scholar 

  42. U. Jae Kwang, L. Suhui, J. Seonghyun et al., IEEE Trans. Electron Devices 62, 2212 (2015). https://doi.org/10.1109/ted.2015.2431073

    Article  Google Scholar 

  43. T. Rembert, C. Battaglia, A. Anders, A. Javey, Adv. Mater. 27, 6090 (2015). https://doi.org/10.1002/adma.201502159

    Article  CAS  Google Scholar 

  44. H.H. Hsieh, H.H. Lu, H.C. Ting, C.S. Chuang, C.Y. Chen, Y. Lin, J. Inf. Disp. 11, 160 (2010). https://doi.org/10.1080/15980316.2010.9665845

    Article  Google Scholar 

  45. J. Fan, C.-Y. Lee, S.-J. Chen et al., SID Symp. Dig. Tech. Papers 50, 454 (2019)

    Article  CAS  Google Scholar 

  46. S. Nakano, N. Saito, K. Miura et al., J. Soc. Inform. Display 20, 493 (2012). https://doi.org/10.1002/jsid.111

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Synthesis and characterization measurements performed at Dokuz Eylul University, The Center for Fabrication and Applications of Electronic Materials. This research was fully supported by Vestel Electronics and The Scientific and Technical Research Council of Turkey (TUBITAK) under Project No. 3180395. Special Thanks to VESTEL Electronics for their kind and continuous support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by CO, MFE, SY, and MN. The first draft of the manuscript was written by CO and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Caglar Ozer.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, C., Ebeoglugil, M.F., Yildirim, S. et al. High-performance a-IGZO-based flexible TTFT with stacked dielectric layers via ultrathin high-κ SrTiO3 buffer layer grown on HfO2. J Mater Sci: Mater Electron 33, 1511–1528 (2022). https://doi.org/10.1007/s10854-021-07662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07662-z

Navigation