Skip to main content
Log in

Flexibility investigation of free-silicon organic–inorganic (ZrTiHfO2-PVP) hybrid films as a gate dielectric

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The current effort is aimed to introduce the organic–inorganic hybrid gate dielectric with potential application in flexible thin-film transistors. The organic–inorganic dielectrics could possess high-k dielectric constants with a remarkable difference in optical transparency as well as low-temperature process like the conventional metal oxides. By using spin coating technique, the targeted ZrTiHfO2-PVP composite with different organic–inorganic fractions was deposited on transparent and flexible substrates of the indium thin oxide layer-coated polyethylene terephthalate. After that, by using physical vapor deposition technique, nanometer-sized ZnO film (50 nm) as transistor channel and 100 nm Au pad as source and drain electrodes deposited, respectively. Thermal performance and structural classification of proposed composite studied by using thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy techniques. The smooth surface materialization of these films confirmed by atomic force microscopy characterization. The supreme capacitance value of 1 kHz obtained for the film while it is calculated over a frequency interval from 1 to 1000 kHz. It was found that the leakage current could be engineered through increasing the amount of PVP ratio in composite. The transfer characteristics of the devices including Ion/off, mobility and threshold voltage calculated before bending and different bending radii for devices. Finally, the results highlighted that the proposed thin-film composite would have a promising aptitude for optoelectronic applications as the future transparent dielectric gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source voltage of 10 V at various bending radius b R = ∞, c R = 15 mm and d R = 7 mm

Fig. 6

Similar content being viewed by others

References:

  1. K. Honda et al., Pulsed laser deposition and analysis for structural and electrical properties of HfO2–TiO2 composite films. Jpn. J. Appl. Phys. 43(4A), 1571–1576 (2004)

    Article  ADS  Google Scholar 

  2. C. Bartic et al., Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65–72 (2002)

    Article  Google Scholar 

  3. X.-H. Zhang et al., High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD). Org. Electron. 8(6), 718–726 (2007)

    Article  Google Scholar 

  4. M.-S. Kang, W.-J. Cho, High-performance amorphous indium gallium zinc oxide thin-film transistors with sol-gel processed gate dielectric and channel layer fabricated using microwave irradiation. Curr. Appl. Phys. 18(9), 1080–1086 (2018)

    Article  ADS  Google Scholar 

  5. J.W. Park, B.H. Kang, H.J. Kim, A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Func. Mater. 30(20), 1904632 (2019)

    Article  Google Scholar 

  6. G. Cantarella et al., Review of recent trends in flexible metal oxide thin-film transistors for analog applications. Flex. Print. Electron. 5(3), 033001 (2020)

    Article  Google Scholar 

  7. L. Yuan et al., Energy-band alignment of (HfO2)x(Al2O3)1–x gate dielectrics deposited by atomic layer deposition on β-Ga2O3 (− 201). Appl. Surf. Sci. 433, 530–534 (2018)

    Article  ADS  Google Scholar 

  8. Y.B. Yoo et al., Solution-processed high-k HfO2 gate dielectric processed under softening temperature of polymer substrates. J. Mater. Chem. C 1(8), 1651–1658 (2013)

    Article  Google Scholar 

  9. A. Kumar, S. Mondal, K.K. Rao, Low temperature solution processed high-k ZrO2 gate dielectrics for nanoelectonics. Appl. Surface Sci. 370, 373–379 (2015)

    Article  ADS  Google Scholar 

  10. J.-J. Huang et al., Enhancement of electrical characteristics and reliability in crystallized ZrO2 gate dielectrics treated with in-situ atomic layer doping of nitrogen. Appl. Surf. Sci. 305, 214–220 (2014)

    Article  ADS  Google Scholar 

  11. Q. Wan et al., Structural and electrical characteristics of Ge nanoclusters embedded in Al2O3 gate dielectric. Appl. Phys. Lett. 82(26), 4708–4710 (2003)

    Article  ADS  Google Scholar 

  12. A. Liu et al., Room-temperature fabrication of ultra-thin ZrOx dielectric for high-performance InTiZnO thin-film transistors. Curr. Appl. Phys. 14, S39–S43 (2014)

    Article  ADS  Google Scholar 

  13. A. Sharma et al., Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electron. Mater. Lett. 16(1), 22–34 (2019)

    Article  ADS  Google Scholar 

  14. A.T. Oluwabi et al., Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistor. J. Mater. Chem. C 8(11), 3730–3739 (2020)

    Article  Google Scholar 

  15. J.K. Saha et al., Remarkable stability improvement of ZnO TFT with Al2O3 gate insulator by yttrium passivation with spray pyrolysis. Nanomaterials 10(5), 976 (2020)

    Article  Google Scholar 

  16. F. Cheng et al., Solution-processable and photopolymerisable TiO2 nanorods as dielectric layers for thin film transistors. RSC Adv. 10(43), 25540–25546 (2020)

    Article  ADS  Google Scholar 

  17. J. Hwang et al., Hybrid gate insulator for OTFT using dip-coating method. Curr. Appl. Phys. 11(4), S154–S157 (2011)

    Article  Google Scholar 

  18. G. Kim et al., Organic thin-film transistors with a bottom bilayer gate dielectric having a low operating voltage and high operational stability. ACS Appl. Electron. Mater. 2(9), 2813–2818 (2020)

    Article  Google Scholar 

  19. M. Geiger et al., Effect of the degree of the gate-dielectric surface roughness on the performance of bottom-gate organic thin-film transistors. Adv. Mater. Interfaces 7(10), 1902145 (2020)

    Article  Google Scholar 

  20. H. Najafi-Ashtiani, Performance evaluation of free-silicon organic-inorganic hybrid (SiO2–TiO2PVP) thin films as a gate dielectric. Appl. Surf. Sci. 455, 373–378 (2018)

    Article  ADS  Google Scholar 

  21. H. Najafi-Ashtiani, Low temperature processing of BaTiO3-PMMA-PVP hybrid films as transparent dielectric gate. J. Mater. Sci. Mater. Electron. 30, 7087–7094 (2019)

    Article  Google Scholar 

  22. H.N. Arnold et al., Tunable radiation response in hybrid organic−inorganic gate dielectrics for low-voltage graphene electronics. ACS Appl. Mater. Interfaces 8(8), 5058–5064 (2016)

    Article  Google Scholar 

  23. J.Y. Choi et al., Flexible SiInZnO thin film transistor with organic/inorganic hybrid gate dielectric processed at 150 °C. Semicond. Sci. Technol. 31, 125007–125012 (2016)

    Article  ADS  Google Scholar 

  24. J. Ha et al., Thermally curable organic/inorganic hybrid polymers as gate dielectrics for organic thin-film transistors. J. Polym. Sci. 52, 3260–3268 (2014)

    Article  Google Scholar 

  25. K. Kim et al., Photo-cross-linkable organic-inorganic hybrid gate dielectric for high performance organic thin film transistors. J. Phys. Chem. C 120(10), 5790–5796 (2016)

    Article  Google Scholar 

  26. M.G. Syamala Rao et al., Low-temperature sol-gel ZrHfO2-PMMA hybrid dielectric thin-films for metal oxide TFTs. J. Non-Cryst. Solids 502, 152–158 (2018)

    Article  ADS  Google Scholar 

  27. D.G. Georgiev et al., An XPS study of laser-fabricated polyimide/titanium interfaces. Appl. Surf. Sci. 236, 71–76 (2004)

    Article  ADS  Google Scholar 

  28. R. Ganesan et al., The role of pulse length in target poisoning during reactive HiPIMS: application to amorphous HfO2. Plasma Sources Sci. Technol. 24(3), 035015 (2015)

    Article  ADS  Google Scholar 

  29. M.-J. Park et al., Improvements in the bending performance and bias stability of flexible InGaZnO thin film transistors and optimum barrier structures for plastic poly(ethylene naphthalate) substrates. J. Mater. Chem. C 3(18), 4779–4786 (2015)

    Article  Google Scholar 

  30. S.J. Kim et al., Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate. ACS Appl. Mater. Interfaces 7(8), 4869–4874 (2015)

    Article  Google Scholar 

  31. Y. Kumaresan et al., Highly bendable In–Ga–ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci. Rep. 6, 37764 (2016)

    Article  ADS  Google Scholar 

  32. Y.Y. Yu, A.H. Jiang, W.Y. Lee, Organic/inorganic nano-hybrids with high dielectric constant for organic thin film transistor applications. Nanoscale Res. Lett. 11(1), 488 (2016)

    Article  ADS  Google Scholar 

  33. R. Ponce-Ortiz, A. Facchetti, T.J. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205–239 (2010)

    Article  Google Scholar 

  34. H. Najafi-Ashtiani, A. Tavousi, A. Ramzannezhad, A. Rahdar, Solution-processable LaTiOx-PVP as silicon-free gate dielectric at low temperature for high-performance organic-inorganic field effect transistors. J. Electron. Mater. (2021). https://doi.org/10.1007/s11664-021-08766-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Najafi-Ashtiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi-Ashtiani, H., Rahdar, A. Flexibility investigation of free-silicon organic–inorganic (ZrTiHfO2-PVP) hybrid films as a gate dielectric. Appl. Phys. A 127, 217 (2021). https://doi.org/10.1007/s00339-021-04372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04372-5

Keywords

Navigation