Skip to main content
Log in

Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Adapting the solution growth method, l-cysteine cadmium chloride (LCC) crystal was synthesized, and by using a single-crystal X-ray diffraction analysis, orthorhombic system was confirmed. From the powder XRD pattern, the crystalline nature of LCC crystal was revealed. With the help of FTIR spectroscopy, various functional groups present in the LCC crystal were identified. The UV–Vis-NIR spectroscopy analysis indicates a lower cutoff wavelength of 244 nm with an optical band gap of 3.77 eV. The linear optical properties such as optical conductivity (σopt) and electric susceptibility (χe) are also evaluated. By conducting the test of mechanical analysis, the hard nature of the LCC crystal was identified. A higher thermal withstand capacity of 392 °C was determined using TG/DT analysis. During the process, the high-energy-laser withstand capacity of the material was analyzed by a laser damage threshold analysis and it was found to be 6.87 GW/cm2. Kurtz and Perry's method was used to measure the SHG efficiency and observed to be 2.32 times higher than KDP. The negative nonlinear refractive index of the LCC crystal was confirmed by Z-scan experiment and the nonlinear refractive index (n2 = 2.73 × 10–11 m3/W), nonlinear absorption coefficient (β = 6.111 × 10–5 m/W), third-order nonlinear optical susceptibility (χ3 = 1.229 × 10–9 esu). The optical limiting performance of the LCC crystal displays a linear variation output for varying input laser power in low intensities and the optical limiting threshold value was found to be 46.9 mW. Etching analysis confirms the dislocation growth mechanism of the grown LCC crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Not applicable.

Research data policy

Not applicable.

References

  1. A. Anbarasi, S.M. Ravi Kumar, G.J. Shanmuga Sundar, Allen Moses, M. Prabhakaran, R. Ravisankar, R. Gunaseelan, Investigations on synthesis, growth and physicochemical properties of semiorganic NLO crystal bis(thiourea) ammonium nitrate for nonlinear frequency conversion. Phys. B 522, 31–38 (2017)

    CAS  Google Scholar 

  2. I. Epsy Devakirubai, S.M. Ravi Kumar, S.E. Allen Moses, R. Gunaseelan, Probing optical (2nd and 3rd order), mechanical and thermal traits of L-arginine hydrochloride monohydrate (LAHCM) NLO crystal for optoelectronics device applications. Mater. Today: Proc. (2020). https://doi.org/10.1016/j.matpr.2020.08.696

    Article  Google Scholar 

  3. Tejaswi Ashok Hegde, Atanu Dutta, G. Vinitha, (χ3) measurement and optical limiting behaviour of novel semiorganic cadmium mercury thiocyanate crystal by Z-scan technique. Appl. Phys. A 124, 8081–10 (2018)

    Google Scholar 

  4. Breck Hitz, J.J. Ewing, Jeff Hecht, Introduction to laser technology, 4th edn. (IEEE Press, New York, 2012)

    Google Scholar 

  5. T. Kubendiran, S.M. Ravi Kumar, S.E. Allen Moses, A. Nasareena Banu, C. Shanthi, S. Sivaraj, Second and third order nonlinear optical, mechanical, surface characteristics of bis(thiourea) manganese chloride (BTMC) grown by slow cooling technique used for frequency conversion applications. J. Mater. Sci. 30, 17559–17571 (2019)

    CAS  Google Scholar 

  6. S.E. Allen Moses, S. Tamilselvan, S.M. Ravikumar, G. Vinitha, T.A. Hegde, G.J. Shanmuga Sundar, M. Vimalan, S. Sivaraj, Crystal structure, Spectroscopic, thermal, mechanical, linear optical, second order and third order nonlinear optical properties of semiorganic crystal: L-threoninium phosphate (LTP). J. Mater. Sci.: Mater. Electron. 30, 9003–9014 (2019)

    CAS  Google Scholar 

  7. R.M. Ambrose, S. Stanly John Xavier, S. Anbarasu, A.D. Prem, Growth and characterization studies of an efficient semiorganic NLO single crystal: 2-amino 5-nitropyridinium sulfamate (2A5NPS) by assembled temperature reduction (ATR) method‘. Opt. Mater. 55, 153–159 (2016)

    Google Scholar 

  8. G. Babu, P. Ramasamy, Crystal structure, crystal growth and characterization of novel organic NLO material: 2, 4, 4’ -trimethoxy benzophenone‘. Mater. Chem. Phys. 119, 533–538 (2010)

    CAS  Google Scholar 

  9. RBairava Ganesh, V. Kannan, R. Sathyalakshmi, P. Ramasamy, The growth of L-glutamic acid hydrochloride crystals by Sankaranarayanan Ramasamy (SR) method. Mater. Lett. 61, 706–708 (2007)

    CAS  Google Scholar 

  10. S.E. Allen Moses, S. Tamilselvan, S.M. Ravi Kumar, G. Vinitha, T.A. Hegde, M. Vimalan, S. Varalakshmi, S. Sivaraj, Synthesis, growth and physicochemical properties of new organic nonlinear optical crystal L-threoninium tartrate (LTT) for frequency conversion. Mater. Sci. Energy Technol. 2, 565–574 (2019)

    Google Scholar 

  11. J. Johnson, R. Srineevasan, D. Sivavishnu, S.E. Allen Moses, Materials synthesis, band gap energy, yield strength and frequency doubling properties of 4-dimethylaminopyridine lithium chloride: a semiorganic nonlinear optical crystal. J. Mater. Sci. Energy Technol. 2, 543–550 (2019)

    Google Scholar 

  12. M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shields, B.C. Penn, D.V. Frazier, Solution growth of a novel nonlinear optical material: L-histidine tetrafluroborate. J. Cryst. Growth 204, 179–182 (1999)

    CAS  Google Scholar 

  13. S.E. Allen Moses, S. Tamilselvan, S.M. Ravikumar, J. Johnson, Synthesis, growth and characterization of semi-organic nonlinear optical L-threnoninum sodium fluoride (LTSF) crystal for photonics application. Chin. J. Phys. 58, 294–302 (2019)

    Google Scholar 

  14. S. Velsko, Laser program annual report, Lawrence, Lawrence Livermore (National laboratory, Livermore CA, 1990)

    Google Scholar 

  15. T. Kubendiran, S.M. Ravi Kumar, S.E. Allen Moses, A. Nasareena Banu, C. Shanthi, S. Sivaraj, Second and third order nonlinear optical, mechanical, surface characteristics of bis(thiourea) manganese chloride (BTMC) grown by slow cooling technique used for frequency conversion applications. J. Mater. Sci.: Mater. Electron. 30(19), 17559–17571 (2019)

    CAS  Google Scholar 

  16. O.M. Yaghi, H. Li, C. Davis, D. Richaedson, T.L. Groy, Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc. Chem. Res. 31, 474–484 (1998)

    CAS  Google Scholar 

  17. T. Balakrishnan, K. Ramamurthi, Growth, structural, optical, thermal and mechanical properties of glycine zinc chloride single crystal. Mater. Lett. 62, 65–68 (2008)

    CAS  Google Scholar 

  18. R. Vivekanandhan, K. Raju, S. Sahaya Jude Dhas, V. Chithambaram, Investigation on novel nonlinear optical L-threonine calcium chloride single crystal grown by solution growth technique. Int. J. Appl. Eng. Res. 13, 13454–13459 (2018)

    Google Scholar 

  19. P.H. Ashwini Mahadik, P.H. Soni, C.F. Desai, Effect of L- cysteine doping on growth and some characteristics of potassium dihydrogen phosphate single crystals. Phys. B: Phys. Condens. Matter 527, 61–65 (2017)

    Google Scholar 

  20. S. Palaniswamy, O.N. Balasundaram, Growth, optical and mechanical properties of alanine sodium nitrate (ASN)”. Rasayan J. Chem. 1, 782–787 (2008)

    CAS  Google Scholar 

  21. N. Indumathi, S. Arulmani, E. Chinnasamy, K. Deepa, M. Victor Antony Raj, S. Senthila, Synthesis, experimental and DFT investigations on semiorganic NLO active L-threonine lithium chloride single crystal. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.07.741

    Article  Google Scholar 

  22. J. Qin, D. Liu, C. Dai, C. Chen, B. Wu, C. Yang, C. Zhan, Influence of the molecular configuration on second-order nonlinear optical properties of coordination compounds. Coord. Chem. Rev 188, 23–34 (1999)

    CAS  Google Scholar 

  23. S.A. Moggach, D.R. Allan, S.J. Clark, M.J. Gutmann, S. Parsons, C.R. Pulham, L. Sawyer, High-pressure polymorphism in L-cysteine: the crystal structures of L-cysteine-III and L-cysteine-IV. Acta Cryst. 62, 293–309 (2006)

    Google Scholar 

  24. V. Azeezaaa, A.J. Arul Pragasam, T.G. Sunitha, P. Koteeswari, S. Suresh, Growth and characterization of non-linear optical single crystal: L-cysteine hydrochloride monohydrate. Acta Phys. Pol. A 128, 423–430 (2015)

    Google Scholar 

  25. T. Uma Devi, N. Lawrence, R. Rameshbabu, S. Selvanayagam, Helen Stoeckli-Evans, G. Bhagavannarayana, K. Ramamurthi, Synthesis, crystal growth, structural, optical, thermal and mechanical properties of semiorganic nonlinear optical material: L-cystine dihydrochloride. J. Miner. Mater. Charact. Eng. 9, 495–507 (2010)

    Google Scholar 

  26. E. Ramachandran, S. Natarajan, Crystal growth of some urinary stone constituents: III. In- vitro crystallization of L-cystine and its characterization. Cryst. Res. Technol. 39, 308–312 (2004)

    CAS  Google Scholar 

  27. A. Pricilla Jeyakumari, J. Ramajothi, S. Dhanuskodi, Structural and microhardness studies of a NLO material–bisthiourea cadmium chloride. J. Cryst. Growth 269, 558–564 (2004)

    Google Scholar 

  28. M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shields, B.G. Penn, D.V. Frazier, Solution growth of a novel nonlinear optical material: L-histidine tetrafluoroborate. J. Cryst. Growth 204, 179–182 (1999)

    CAS  Google Scholar 

  29. T.N. Ghosh, A.K. Bhunia, S.S. Pradhan, S.K. Sarkar, Electric modulus approach to the analysis of electric relaxation and magnetodielectric effect in reduced graphene oxide–poly(vinyl alcohol) nanocomposite. J. Mater. Sci.: Mater. Electron. 31, 15919–15930 (2020)

    CAS  Google Scholar 

  30. A.K. Bhunia, S.S. Pradhan, K. Bhunia, A.K. Pradhan, S. Saha, Study of the optical properties and frequencydependent electrical modulus spectrum to the analysis of electric relaxation and conductivity effect in zinc oxide nanoparticles. J. Mater. Sci.: Mater. Electron. 32, 22561–22578 (2021)

    CAS  Google Scholar 

  31. M. Magesh, G. Bhagavannarayana, P. Ramasamy, Synthesis, crystal growth and characterization of an organic material: 2-aminopyridinium succinate succinic acid single crystal. Spectrochim. Acta A 150, 765 (2015)

    CAS  Google Scholar 

  32. P. Jayaprakash, P. Sangeetha, C. Rathika Thaya Kumari, M. Lydia Caroline, Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured DMandelic acid single crystal: a promising material for nonlinear optical applications. Phys. B Condens. Matter 518, 1–12 (2017)

    CAS  Google Scholar 

  33. S. Gedi, V.R.M. Reddy, C. Park, J. Chan-Wook, K.T.R. Reddy, Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 42, 468–475 (2015)

    CAS  Google Scholar 

  34. M.S. El-Bana, S.S. Fouad, Opto-electrical characterisation of As33Se67− xSnx thin films. J. Alloys Compd. 695, 1532–1538 (2017)

    CAS  Google Scholar 

  35. P. Sharma, M.S. El-Bana, S.S. Fouad, V. Sharma, Effect of compositional dependence on physical and optical parameters of Te17Se83− xBix glassy system. J. Alloys Compd. 667, 204–210 (2016)

    CAS  Google Scholar 

  36. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solid. Mater Chem. Phys. 63, 145-152. 34 (2000)

    CAS  Google Scholar 

  37. E.M. Onitsech, ‘The present status of testing the hardness of materials.’ Mikroskopie 95(12–14), 35 (1956)

    Google Scholar 

  38. N. Vijayan, G. Bhagavannarayana, K.R. Ramesh, R. Gopalakrisnan, K.K. Maurya, P. Ramasamy, A comparative study on solution- and Bridgman-Grown single crystals of benzimidazole by high-resolution X-ray diffractometry, fourier transform infrared, microhardness, laser damage threshold, and second-harmonic generation measurements. Cryst. Growth Des. 6, 1542–154636 (2006)

    CAS  Google Scholar 

  39. K.G. Subhadra, E. Balaiah, D.B. Sirdeshmukh, Systematic hardness measurements on CsClxBr(1–x) and NH4ClxBr(1–x) mixed crystals. Bull. Mater. Sci. 25, 31-35.40 (2002)

    CAS  Google Scholar 

  40. S. Mukerji, T. Kar, Vicker’s microhardness studies of L-arginine hydrobromide monohydrate crystals (LAHBr). Cryst. Res. Technol. 34, 1323–13341 (1999)

    CAS  Google Scholar 

  41. M.C. Shaw, The fundamental basis of the hardness test, in The Science of Hardness Testing and its Research Applications. ed. by J.H. Westbrook, H. Conrad (American Society for Metals, Cleveland, Ohio, 1973), p. 42

    Google Scholar 

  42. S.E. Allen Moses, S.M. Ravi Kumar, T.A. Hegde, Crystal engineering and physicochemical properties of L-threoninium succinate (LTS) single crystal for frequency conversion applications. J. Mater. Sci.: Mater. Electron. 31, 21097–21107 (2020)

    CAS  Google Scholar 

  43. R. Sankar, C.M. Raghavan, R. Mohan Kumar, R. Jayavel, Growth and characterization of a new semiorganic non-linear optical thiosemicarbazide cadmium chloride monohydrate (Cd(NH2NHCSNH2)Cl2H2O) single crystals. J. Cryst. Growth 305, 156–161 (2007)

    CAS  Google Scholar 

  44. M. Anbuchezhiyan, S. Ponnusamy, C. Muthamizhchelvan, Crystal growth and characterizations of L-cystine dihydrobromide-a semiorganic nonlinear optical material. Phys. B 405, 1119–1124 (2010)

    CAS  Google Scholar 

  45. D. Manivannan, K. Kirubavathi, G. Bakiyaraj, K. Selvaraju, Studies on L-cystine hydrobromide single crystals for nonlinear optical applications, Journal of Taibah University for. Science 12, 64–68 (2018)

    Google Scholar 

  46. G. Bhagavannarayana, S. Kumar, S.K. Mohd Shakir, K.K. Kushawaha, K.K. Maurya, R. Malhotra, K. Ramachandra Rao, Unidirectional growth of L-cysteine hydrochloride monohydrate: first time observation as nonlinear optical material and its characterization. J. Appl. Crystallogr. 43, 710–715 (2010)

    CAS  Google Scholar 

  47. Kurtz, Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968)

    CAS  Google Scholar 

  48. N.R. Dhumane, S.S. Hussaini, V.G. Dongre, P.P. Karmuse, M.D. Shirsat, Growth and characterization of glycine doped bis thiourea cadmium chloride single crystal. Cryst. Res. Technol. 44, 269–274 (2009)

    CAS  Google Scholar 

  49. N.N. Shejwal, S.S. Hussaini, M.D. Shirsat, Growth, SHG and Z-Scan studies of the pure and L-cysteine doped zinc thiourea sulphate crystal for photonic device applications. Int. Res. J. Sci. Eng. 2, 267–271 (2018)

    Google Scholar 

  50. D.L. Mills, Nonlinear Optics: Basic Concepts (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  51. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n2 measurements. Opt. Lett. 14, 955 (1989)

    CAS  Google Scholar 

  52. E.G. Sauter, Nonlinear Optics (Wiley, Hoboken, 1996)

    Google Scholar 

  53. R.W. Boyd, Nonlinear Optics (Academic Press, Cambridge, 2013)

    Google Scholar 

  54. G.I. Stegeman, R.A. Stegeman, Nonlinear Optics: Phenomena Materials and Devices (Wiley, Hoboken, 2012)

    Google Scholar 

  55. M. Rashidian, D. Dorranian, Investigation of optical limiting in nanometals. Rev. Adv. Mater. Sci. 40, 110–126 (2015)

    CAS  Google Scholar 

  56. L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum Electron 17, 299–338 (1993)

    CAS  Google Scholar 

  57. M. Calvete, G.Y. Yang, M. Hanack, Porphyrins and phthalocyanines as materials for optical limiting. Synth. Met. 141, 231–243 (2004)

    CAS  Google Scholar 

  58. X. He, D. Xue, Doping mechanism of optical-damage-resistant ions in lithium niobate crystals. Opt. Commun. 265, 537–541 (2006)

    CAS  Google Scholar 

  59. M. Dennis Raj, M. Jeeva, G. Shankar, M. Venkatesa Prabhu, I. Vimalan, Vetha Potheher, Synthesis, growth, physicochemical properties and DFT calculations of 2-naphthol substituted Mannich base 1-(morpholino(phenyl) methyl) naphthalen-2-ol: A non-linear optical single crystal. J. Mol. Struct. 1147, 763–775 (2017)

    CAS  Google Scholar 

  60. M. Packiya raj, S.M. Ravi Kumar, D. Sivavishnu, T. Kubendiran, A. Anbarasi, S.E. Allen Moses, Synthesis, growth and optical, mechanical, electrical and surface properties of an inorganic new nonlinear optical crystal: sodium cadmium tetra chloride (SCTC). Cryst. Res. Technol. 17071, 1–8 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JJ has contributed to the study conception and design. Experimental and characterization parts were performed by PN, YR, and EV. The manuscript was written by SEAM. The manuscript correction was carried out by RS and RG. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to S. E. Allen Moses.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This study was approved by the School of Arts and Science, Vinayaka Mission’s Research Foundation, AV campus, Chennai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen Moses, S.E., Johnson, J., Nagaraju, P. et al. Crystal engineering and physicochemical properties of l-cysteine cadmium chloride (LCC) for frequency-doubling and optical limiting applications. J Mater Sci: Mater Electron 33, 1489–1502 (2022). https://doi.org/10.1007/s10854-021-07659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07659-8

Navigation