Skip to main content
Log in

Investigation on crystal growth, spectral, linear optical studies, and third-order nonlinear optical analysis of L-Cysteine hydrochloride monohydrate lithium sulphate (L-CHMLS) single crystals for optical limiting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Crystals made of amino acids have remarkable nonlinear and electro-optical characteristics. L-cysteine hydrochloride monohydrate (C3H7NO2·S.HCL·H2O) lithium sulphate (Li2SO4), a new nonlinear optical material belonging to the semi-organic category, was produced for the first time via slow evaporation. L-CHMLS is a monoclinic crystal system, according to X-ray diffraction studies on single crystals. Based on FT-IR and Raman vibrational patterns, L-CHMLS is proven to contain functional groups. Ultra–Visible spectral analysis shows that the crystal exhibits Second Harmonic Generation (SHG) signals at 276 nm due to its reduced cut-off wavelength. The UV absorption curve indicates that the optical band gap is 4.49 eV. The measurement of optical constants using UV-Visible absorbance data, such as extinction coefficient and reflectance, is beneficial to NLO device performance. On grown crystals, luminescence study was conducted, and the maximum emission occurs with good optical transmission over the visible spectrum. Micro hardness and dielectric investigations were used to evaluate the mechanical and dielectric properties of L-CHMLS. By using SEM, we assessed the surface morphology of the crystal as it was grown. Analysing the L-CHMLS crystal with energy dispersive X-rays yielded its chemical composition. To estimate laser damage threshold (LDT), an Nd:YAG laser (1064 nm) was used. The presence of L-CHMLS’s nonlinear optical feature was proven by a second harmonic generation test utilizing a 1064 nm Nd:YAG laser. Z-Scan techniques are used to examine the crystal’s third-order nonlinear optical properties. An excited state absorption or sequential absorption can be observed in this material. In view of its greater nonlinear absorption coefficient (0.54 × 10−10 m/W) and lower onset optical limiting threshold (3.19 × 1012 W/m2), L-CHMLS is an attractive candidate for optical limiting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Haw, Holographic data storage: the light fantastic. Nature. 422(6932), 556–559 (2003). https://doi.org/10.1038/422556a

    Article  CAS  Google Scholar 

  2. G. Assanto, I. Torelli, Cascading effects in type II second-harmonic generation: applications to all-optical processing. Opt. commun. 119(1–2), 143–148 (1995). https://doi.org/10.1016/0030-4018(95)00312-V

    Article  CAS  Google Scholar 

  3. S. Ittyachan, Reena, S.A. Xavier Jesu Raja, Rajasekar, P. Sagayaraj, Crystallization and characterization of L-histidinium perchlorate single crystal. Mater. Chem. Phys. 90(1), 10–15 (2005). https://doi.org/10.1016/j.matchemphys.2004.04.025

    Article  CAS  Google Scholar 

  4. M. Caroline, A. Lydia, R. Kandasamy, Mohan, S. Vasudevan, Growth and characterization of dichlorobis l-proline zn (II): a semiorganic nonlinear optical single crystal. J. Cryst. Growth. 311(4), 1161–1165 (2009). https://doi.org/10.1016/j.jcrysgro.2008.11.095

    Article  CAS  Google Scholar 

  5. S.K. Shakir, Mohd, K.K. Kushwaha, Maurya, R.C. Bhatt, M.A. Wahab, G. Bhagavannarayana.“ Mater. Chem. Phys. 120, 566–570 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.008

    Article  CAS  Google Scholar 

  6. B. Riscob, N. Mohd Shakir, K.K. Vijayan, M.A. Maurya, Wahab, G. Bhagavannarayana, Unidirectional crystal growth and crystalline perfection of L-arginine phosphate monohydrate. J. Appl. Crystallogr. 45(4), 679–685 (2012). https://doi.org/10.1107/S0021889812016822

    Article  CAS  Google Scholar 

  7. V. Azeezaa, A. Arul Pragasam, T. Sunitha, P. Koteeswari, S. Suresh, Growth and characterization of non-linear optical single crystal: L-cysteine hydrochloride monohydrate. Acta Phys. Pol., a 128(3), 423–430 (2015). https://doi.org/10.12693/APhysPolA.128.423

    Article  CAS  Google Scholar 

  8. R. Divya, N. Manikandan, T.C.S. Girisun, G. Vinitha, Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application. Opt. Mater. 100, 109641 (2020). https://doi.org/10.1016/j.optmat.2019.109641

    Article  CAS  Google Scholar 

  9. C. Babeela, T.C. Sabari Girisun, G. Vinitha, Optical limiting behavior of β-BaB2O4 nanoparticles in pulsed and continuous wave regime. J. Phys. D 48(6), 065102 (2015). https://doi.org/10.1088/0022-3727/48/6/065102

    Article  CAS  Google Scholar 

  10. J.H. Vella, J.H. Goldsmith, A.T. Browning, I. Nicholaos, I. Limberopoulos, Vitebskiy, Eleana Makri, and Tsampikos Kottos. Experimental realization of a reflective optical limiter. Phys. Rev. Appl. 5(6), 064010 (2016). https://doi.org/10.1103/PhysRevApplied.5.064010

    Article  CAS  Google Scholar 

  11. M. Rashidian, D. Dorranian, Investigation of optical limiting in nanometals. Rev. Adv Mater. Sci. 40, 110–126 (2015)

    CAS  Google Scholar 

  12. R. Priya, S. Krishnan, C. Justin Raj, S. Jerome Das, Growth and characterization of NLO active lithium sulphate monohydrate single crystals. Cryst. Res. Technology: J. Experimental Industrial Crystallogr. 44(12), 1272–1276 (2009). https://doi.org/10.1002/crat.200900504

    Article  CAS  Google Scholar 

  13. T. Vela, P. Selvarajan, T.H. Freeda, K. Balasubramanian, Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured L-alanine crystal. Phys. Scr. 87(4), 045801 (2013). https://doi.org/10.1088/0031-8949/87/04/045801

    Article  CAS  Google Scholar 

  14. M.R. Kumar, H.J. Suresh, Ravindra, S.M. Dharmaprakash, Synthesis, crystal growth and characterization of glycine lithium sulphate. J. Cryst. Growth. 306(2), 361–365 (2007). https://doi.org/10.1016/j.jcrysgro.2007.05.015

    Article  CAS  Google Scholar 

  15. K. Boopathi, P. Ramasamy, G. Bhagavannarayana, Growth and characterization of Cu (II) doped negatively soluble lithium sulfate monohydrate crystals. J. Cryst. Growth. 386, 32–37 (2014). https://doi.org/10.1016/j.jcrysgro.2013.09.028

    Article  CAS  Google Scholar 

  16. B.M. Suleiman, M. Gustavsson, E. Karawacki, A. Lundén, Thermal properties of lithium sulphate. J. Phys. D 30(18), 2553 (1997). https://doi.org/10.1088/0022-3727/30/18/009

    Article  CAS  Google Scholar 

  17. G. Bhagavannarayana, S. Kumar, M. Shakir, S.K. Kushawaha, K.K. Maurya, R. Malhotra, Ramachandra Rao. Unidirectional growth of L-cysteine hydrochloride monohydrate: first time observation as nonlinear optical material and its characterization. J. Appl. Crystallogr. 43(4), 710–715 (2010). https://doi.org/10.1107/S0021889810016870

    Article  CAS  Google Scholar 

  18. K. Verma, Sunil, S. Ramachandra Rao, Kar, Bartwal. Unidirectional growth of large size urea doped L-cysteine hydrochloride monohydrate NLO organic crystal and investigations of its crystalline and optical properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 153, 16–21 (2016). https://doi.org/10.1016/j.saa.2015.08.003

    Article  CAS  Google Scholar 

  19. K. Ramachandra Rao, P.V. Prasad, C. Satyakamal, T.K. Visweswara Rao, P.S.V. SubbaRao, M.C. Rao, Synthesis and characterisation of transition metal doped l-cysteine hydrochloride monohydrate single crystal by conventional and unidirectional method and its comparative study. Mater. Res. Innovations. 20(7), 538–544 (2016). https://doi.org/10.1179/1433075X15Y.0000000083

    Article  CAS  Google Scholar 

  20. P.V. Prasad, T.K. Visweswara Rao, K. Ramachandra Rao, C.S. Kamal, T. Samuel, Studies on influence of Cd2 + ions in unidirectional growth and characterization of L-Cysteine hydrochloride monohydrate single crystals. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1950–1954 (2015). https://doi.org/10.1016/j.saa.2014.10.115

    Article  CAS  Google Scholar 

  21. S. Chandran, R. Kumar, Paulraj, P. Ramasamy, Crystal growth, spectral, optical, laser damage, photoconductivity and dielectric properties of semiorganic l-cystine hydrochloride single crystal. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 151, 432–437 (2015). https://doi.org/10.1016/j.saa.2015.06.113

    Article  CAS  Google Scholar 

  22. M. Karppinen, R. Liminga, J.-O. Lundgren, Ã. Kvick, S.C. Abrahams, Charge density in pyroelectric lithium sulfate monohydrate at 80 and 298 K. J. Chem. Phys. 85(9), 5221–5227 (1986). https://doi.org/10.1063/1.451661

    Article  CAS  Google Scholar 

  23. S.D. Ross, Vibrational assignments in borates with the vaterite structure. J. Mol. Spectrosc. 29, 1–3 (1969). https://doi.org/10.1016/0022-2852(69)90093-9

    Article  Google Scholar 

  24. N.B. Clothup, Introduction to Infrared and Raman Spectroscopy, 2nd edn. (Academic Press, London, 1975)

    Google Scholar 

  25. T. Devi, N. Uma, R. Lawrence, S. Rameshbabu, H. Selvanayagam, G. Stoeckli-Evans, Bhagavannarayana, K. Ramamurthi, Synthesis, crystal growth, structural, optical, thermal and mechanical properties of semiorganic nonlinear optical material: L-cystine dihydrochloride. J. Minerals Mater. Charact. Eng. 9(5), 495–507 (2010)

    Google Scholar 

  26. B. Helina, P. Selvarajan, A.S.J. Lucia Rose, Structural, optical, thermal, mechanical and dielectrical characterizations of γ-glycine crystals grown in strontium chloride solution. Phys. Scr. 85(5), 055803 (2012). https://doi.org/10.1088/0031-8949/85/05/055803

    Article  CAS  Google Scholar 

  27. A. Arunkumar, P. Ramasamy, Growth and characterization of ammonium acid phthalate single crystals. Opt. Mater. 35(6), 1151–1156 (2013). https://doi.org/10.1016/j.optmat.2013.01.001

    Article  CAS  Google Scholar 

  28. K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Synthesis, growth, and characterization of new stilbazolium derivative single crystal: 2-[2-(2, 4-dimethoxy-phenyl)-vinyl]-1-ethyl-pyridinium iodide for third-order NLO applications. J. Mater. Sci.: Mater. Electron. 28, 5180–5191 (2017). https://doi.org/10.1007/s10854-016-6174-x

    Article  CAS  Google Scholar 

  29. C. Raj, S. Justin, S. Dinakaran, B. Krishnan, R. Milton Boaz, Robert, S. Jerome Das, Studies on optical mechanical and transport properties of NLO active L-alanine formate single crystal grown by modified Sankaranarayanan–Ramasamy (SR) method. Optics communications. 281, 2285–2290 (2008). https://doi.org/10.1016/j.optcom.2007.12.019

  30. V. Venkataramanan, S. Maheswaran, J.N. Sherwood, H.L. Bhat, Crystal growth and physical characterization of the semiorganic bis (thiourea) cadmium chloride. J. Cryst. Growth. 179, 3–4 (1997). https://doi.org/10.1016/S0022-0248(97)00137-1

    Article  Google Scholar 

  31. C. Kumari, P. Rathika Thaya, M. Jayaprakash, M. Nageshwari, P. Peer Mohamed, Sangeetha, M. Lydia Caroline, Growth, optical, photoluminescence, dielectric, second and third order nonlinear optical studies of benzoyl valine acentric crystal. Mol. Cryst. Liq. Cryst. 658(1), 186–197 (2017). https://doi.org/10.1080/15421406.2018.1432975

    Article  CAS  Google Scholar 

  32. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  33. J. Reichman, Handbook of optical filters for fluorescence microscopy. Chroma Technol. Corporation (2000)

  34. S. Krishnan, C. Justin Raj, S. Jerome Das, Growth and characterization of novel ferroelectric urea–succinic acid single crystals. J. Cryst. Growth. 310(14), 3313–3317 (2008). https://doi.org/10.1016/j.jcrysgro.2008.03.039

    Article  CAS  Google Scholar 

  35. S. Senthil, S. Pari, P. Sagayaraj, J. Madhavan, Studies on the electrical, linear and nonlinear optical properties of Meta nitroaniline, an efficient NLO crystal. Phys. B: Condens. Matter. 404, 12–13 (2009). https://doi.org/10.1016/j.physb.2009.01.042

    Article  CAS  Google Scholar 

  36. M.I. Baig, M. Anis, G.G. Muley, Influence of tartaric acid on linear-nonlinear optical and electrical properties of KH2PO4 crystal. Opt. Mater. 72, 1–7 (2017). https://doi.org/10.1016/j.optmat.2017.05.042

    Article  CAS  Google Scholar 

  37. R. Vizhi, D. Ezhil, Rajan, Babu, K. Sathiyanarayanan, Study of microhardness and its related physical constants of ferroelectric glycine phosphite (GPI) single crystals. Ferroelectr. Lett. 37(2), 23–29 (2010). https://doi.org/10.1080/07315171003800640

    Article  CAS  Google Scholar 

  38. R. Vizhi, R. Ezhil, Dhivya, D. Rajan Babu, Synthesis, growth, optical and mechanical studies of ferroelectric urea-oxalic acid single crystals. J. Cryst. Growth. 452, 213–219 (2016). https://doi.org/10.1016/j.jcrysgro.2016.04.038

    Article  CAS  Google Scholar 

  39. V. Shkir, Mohd, N. Ganesh, B. Vijayan, A. Riscob, D.K. Kumar, M.S. Rana, Khan et al., Analysis on structural, SHG efficiency, optical and mechanical properties of KDP single crystals influenced by glycine doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 103, 199–204 (2013). https://doi.org/10.1016/j.saa.2012.10.061

    Article  CAS  Google Scholar 

  40. J. Uma, V. Rajendran, Growth and properties of semi-organic nonlinear optical crystal: L-Glutamic acid hydrochloride. Progress in Natural Science: Materials International. 26(1), 24–31 (2016). https://doi.org/10.1016/j.pnsc.2016.01.013

    Article  CAS  Google Scholar 

  41. C.B. Ponton, R.D. Rawlings, Dependence of the Vickers indentation fracture toughness on the surface crack length. Br. Ceramic Trans. J. 88(3), 83–90 (1989)

    CAS  Google Scholar 

  42. K.K. Bamzai, P.N. Kotru, Fracture mechanics, Crack Propagation and Microhardness Studies on Flux grown ErAlO_3 single crystals. Science4, 405–410 (2000)

    Google Scholar 

  43. K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of K Ic of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982). https://doi.org/10.1007/BF00724706

    Article  CAS  Google Scholar 

  44. S. Shanmugan, N. Saravanan, V. Chithambaram, B. Deepanraj, G. Palani, Investigation on single crystal by tartaric acid–barium chloride: growth and characterization of novel NLO materials. Bull. Mater. Sci. 43(1), 202 (2020). https://doi.org/10.1007/s12034-020-02176-6

    Article  CAS  Google Scholar 

  45. M. Meena, B. Samuel Ebinezer, E. Manikandan, R.S. Sundararajan, M. Shalini, R. Natarajan, Synthesis and optical characterizations of l-phenylalanine lithium sulphate (LPLS) semi-organic single crystal. J. Mater. Sci.: Mater. Electron. 34(5), 395 (2023). https://doi.org/10.1007/s10854-023-09820-x

    Article  CAS  Google Scholar 

  46. G.C. Bhar, A.K. Chaudhary, P. Kumbhakar, Study of laser induced damage threshold and effect of inclusions in some nonlinear crystals. Appl. Surf. Sci. 161, 1–2 (2000). https://doi.org/10.1016/S0169-4332(00)00276-2

    Article  Google Scholar 

  47. N.L. Boling, M.D. Crisp, G. Dube, Laser induced surface damage. Appl. Opt. 12, 650–660 (1973). https://doi.org/10.1364/AO.12.000650

    Article  CAS  Google Scholar 

  48. Y. Hu, Z. Zhu, J. Xiao, H. Shao, L. Zhao, M. Xu, J. Zhuang, Atomic scale study of stress-induced misaligned subsurface layers in KDP crystals. Sci. Rep. 9(1), 10399 (2019). https://doi.org/10.1038/s41598-019-46672-0

    Article  CAS  Google Scholar 

  49. S. Vasumathi, H. Johnson, Jeyakumar, P. Selvarajan, Spectral, NLO, thermal, hardness and SEM studies of phosphate doped bis-urea oxalic acid crystals for laser applications. Chin. J. Phys. 73, 1–12 (2021). https://doi.org/10.1016/j.cjph.2021.06.008

    Article  CAS  Google Scholar 

  50. S.A. Britto Dhas, Martin, S. Natarajan, Growth and characterization of L-prolinium tartrate–A new organic NLO material. Cryst. Res. Technol.: J. Exp. Ind. Crystallogr. 42(5), 471–476 (2007). https://doi.org/10.1002/crat.200610850

    Article  CAS  Google Scholar 

  51. M. Shalini, R.S. Sundararajan, T.C. Sabari Girisun, E. Manikandan, M. Meena, Third order non-linear optical, diffractional, electrical, laser damage threshold, elemental and surface studies of l-methionine potassium hydrogen phthalate (LMKHP) single crystals. J. Mater. Sci.: Mater. Electron. 33(24), 19004–19018 (2022). https://doi.org/10.1007/s10854-022-08733-5

    Article  CAS  Google Scholar 

  52. S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968). https://doi.org/10.1063/1.1656857

    Article  CAS  Google Scholar 

  53. M. Fleck, M. Aram, Petrosyan, “Salts of amino acids.“ Crystallization, Structure and Properties. Cham, Switzerland: Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-06299-0

  54. K. Wu, Z. Yang, S. Pan, The first quaternary diamond-like semiconductor with 10-membered LiS 4 rings exhibiting excellent nonlinear optical performances. Chem. Commun. 53, 3010–3013 (2017). https://doi.org/10.1039/C6CC09565H

    Article  CAS  Google Scholar 

  55. G. Li, K. Wu, Q. Liu, Z. Yang, S. Pan, Na2ZnGe2S6: a new infrared nonlinear optical material with good balance between large second-harmonic generation response and high laser damage threshold. J. Am. Chem. Soc. 138(23), 7422–7428 (2016). https://doi.org/10.1021/jacs.6b03734

    Article  CAS  Google Scholar 

  56. G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, R. Kenneth, Poeppelmeier. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 139(31), 10645–10648 (2017). https://doi.org/10.1021/jacs.7b05943

    Article  CAS  Google Scholar 

  57. T.C. Sabari Girisun, M. Saravanan, S. Venugopal Rao, Wavelength-dependent nonlinear optical absorption and broadband optical limiting in Au-Fe2O3-rGO nanocomposites. ACS Appl. Nano Mater. 1(11), 6337–6348 (2018). https://doi.org/10.1021/acsanm.8b01544

    Article  CAS  Google Scholar 

  58. P. Ferrari, S. Upadhyay, M.V. Shestakov, J. Vanbuel, B.D. Roo, Y. Kuang, M.D. Vece et al., Wavelength-dependent nonlinear optical properties of Ag nanoparticles dispersed in a glass host. J. Phys. Chem. C 121(49), 27580–27589 (2017). https://doi.org/10.1021/acs.jpcc.7b09017

    Article  CAS  Google Scholar 

  59. M. Shalini, R.S. Sundararajan, E. Manikandan, M. Meena, B. Samuel Ebinezer, T.C.S. Girisun, R. Natarajan, Growth and characterization of L-Methionine Barium Bromide (LMBB) semi-organic crystal for optical limiting applications. Optik. 278, 170705 (2023). https://doi.org/10.1016/j.ijleo.2023.170705

  60. S. Dhanuskodi, T.C. Sabari Girisun, N. Smijesh, Two-photon absorption and optical limiting in tristhiourea cadmium sulphate. Chem. Phys. Lett. 486, 1–3 (2010). https://doi.org/10.1016/j.cplett.2009.12.069

    Article  CAS  Google Scholar 

  61. N.L. John, S. Abraham, D. Sajan, R. Philip, N. Joy, R. Chitra, Molecular structure, NLO properties, and vibrational analysis of l-Histidine tetra fluro borates by experimental and computational spectroscopic techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 226, 117615 (2020)

    Article  CAS  Google Scholar 

  62. P. Kavitha, S. Christopher Jeyaseelan, T.C. Sabari Girisun, Two photon absorption induced optical limiting action of L-Aspartic acid monohydrate. Opt. Mater. 134, 113134 (2022). https://doi.org/10.1016/j.optmat.2022.113134

    Article  CAS  Google Scholar 

  63. C. Indumathi, T.C. Sabari Girisun, Laser excitation dependent nonlinear absorption of 2-Amino 5-Nitropyridinium dihydrogen phosphate. Mol. Cryst. Liq. Cryst. 692(1), 62–73 (2019). https://doi.org/10.1080/15421406.2019.1708028

    Article  CAS  Google Scholar 

  64. N. Mongwaketsi, S. Khamlich, M. Pranaitis, B. Sahraoui, F. Khammar, G. Garab, R. Sparrow, M. Maaza, Physical origin of third order non-linear optical response of porphyrin nanorods. Mater. Chem. Phys. 134(2–3), 646–650 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.044

    Article  CAS  Google Scholar 

  65. M. Maaza, D. Hamidi, A. Simo, T. Kerdja, A.K. Chaudhary, J.K. Kana, Optical limiting in pulsed laser deposited VO2 nanostructures. Opt. Commun. 285(6), 1190–1193 (2012). https://doi.org/10.1016/j.optcom.2011.09.057

    Article  CAS  Google Scholar 

  66. S. Zongo, K. Sanusi, J. Britton, P. Mthunzi, T. Nyokong, M. Maaza, B. Sahraoui, Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique. Opt. Mater. 46, 270–275 (2015). https://doi.org/10.1016/j.optmat.2015.04.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the ACIC instrumentation center, St. Joseph’s College, Trichy − 02 for FT-IR, UV-Vis-NIR, FL, Dielectrics, and Microhardness characterization facilities. Nanophotonics Laboratory, Bharathidasan University, Tiruchirappalli 620024 for Z-scan characterization, and also thanks to B.S. Abdur Rahman Crescent Institute of Science and Technology Vandalur Chennai – 48 for LDT & NLO characterization facilities. Wish to thank Sophisticated Analytical Instrumentation Facility (SAIF) Indian Institute of Technology (IIT)—Madras for structural characterization. I extend my acknowledgment to Raman Research Park, SRM University Potheri Chennai – 603 203 for Raman instrumentation facilities, Karunya University Coimbatore for SEM-EDAX facilities,

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by MM. The first draft of the manuscript was written by MM, MS, BSE, RSS, TCS, and EM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Meena.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This material is the author’s original work, which has not been previously published elsewhere. The manuscript is not currently being considered for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, M., Shalini, M., Ebinezer, B.S. et al. Investigation on crystal growth, spectral, linear optical studies, and third-order nonlinear optical analysis of L-Cysteine hydrochloride monohydrate lithium sulphate (L-CHMLS) single crystals for optical limiting applications. J Mater Sci: Mater Electron 34, 1778 (2023). https://doi.org/10.1007/s10854-023-11195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11195-y

Navigation