Skip to main content
Log in

Influential role of CdS film thickness in improving CdS/CdTe junction performance for solar cells: structural, optical, and electrical characterizations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdS films of different thicknesses (d ≈ 100–300 nm) are deposited on the glass substrate by thermal evaporation technique. The structure of these films had been studied by Rietveld refinement and atomic pressure microscope. The films of CdS/glass show a wurtzite type structure. XRD calculations show that the lattice parameters a and c have changed, the microstrain decreases, and the crystallite size increases. The optical constants refractive index n, and extinction coefficient, k consequently band gap are estimated from SE via construction an optical model. The refractive index n of the CdS/glass films received from SE model increases with growing of CdS layer thickness that is credited to the rise of the size of the crystal. It was also found that when the thickness of the CdS layer increases, the general behavior of the extinction coefficient k of the CdS/glass film increases. In addition, it is found that the direct optical transition with energy band gap is compact from 2.45 (d = 100 nm) eV to 2.25 eV (d = 300 nm). The Ni/n-CdSe/p-CdTe/Pt heterojunction has been assembled. The dark (cutting-edge-voltage) characteristics of fabricated heterojunctions had been suggested at the different thicknesses of CdS, as well as for voltages ranging from − 2 to 2 V. Based on the dependence of the forward and reverse current at the voltage, the powerful and essential parameters related to the fabricated diode had been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available from the authors upon reasonable request at any time.

Research data policy

It is easy for researchers participating in this research to share data and files that support their publications and give them to any recognized research center or scientific institution that wants these results.

References

  1. J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95, 816–820 (2011). https://doi.org/10.1016/j.solmat.2010.10.027

    Article  CAS  Google Scholar 

  2. B. Ullrich, J. Tomm, N. Dushkina, Y. Tomm, H. Sakai, Y. Segawa, Photoelectric dichroism of oriented thin film CdS fabricated by pulsed-laser deposition. Solid State Commun. 116, 33–35 (2000). https://doi.org/10.1016/S0038-1098(00)00267-2

    Article  CAS  Google Scholar 

  3. R.K. Sharma, K. Jain, A.C. Rastogi, Growth of CdS and CdTe thin films for the fabrication of n-CdS/p-CdTe solar cell. Curr. Appl. Phys. 3, 199–204 (2003). https://doi.org/10.1016/S1567-1739(02)00201-8

    Article  Google Scholar 

  4. X. Mathew, J.P. Enriquez, A. Romeo, A.N. Tiwari, CdTe/CdS solar cells on flexible substrates. Sol. Energy 77, 831–838 (2004). https://doi.org/10.1016/j.solener.2004.06.020

    Article  CAS  Google Scholar 

  5. N. Amin, K. Sopian, M. Konagai, Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Sol. Energy Mater. Sol. Cells. 91, 1202–1208 (2007). https://doi.org/10.1016/j.solmat.2007.04.006

    Article  CAS  Google Scholar 

  6. H. Kim, D. Kim, Influence of CdS heat treatment on the microstructure of CdS and the performance of CdS/CdTe solar cells. Sol. Energy Mater. Sol. Cells. 67, 297–304 (2001). https://doi.org/10.1016/S0927-0248(00)00295-6

    Article  CAS  Google Scholar 

  7. F. Taghizadeh Chari, M.R. Fadavieslam, Microstructural, optical and electrical properties of CdS thin films grown by spray pyrolysis technique as a function of substrate temperature. Opt. Quant. Electron. 51, 377 (2019). https://doi.org/10.1007/s11082-019-2081-8

    Article  CAS  Google Scholar 

  8. T.L. Chu, S.S. Chu, Thin film II–VI photovoltaics. Solid State Electron. 38, 533–549 (1995). https://doi.org/10.1016/0038-1101(94)00203-R

    Article  CAS  Google Scholar 

  9. F. Rodríguez-Mas, J.C. Ferrer, J.L. Alonso, S. Fernández de Ávila, Expanded electroluminescence in high load CdS nanocrystals PVK-based LEDs. Nanomaterials 9, 1212 (2019). https://doi.org/10.3390/nano9091212

    Article  CAS  Google Scholar 

  10. M.A. Buckingham, A.L. Catherall, M.S. Hill, A.L. Johnson, J.D. Parish, Aerosol-assisted chemical vapor deposition of CdS from xanthate single source precursors. Cryst. Growth Des. 17, 907–912 (2017). https://doi.org/10.1021/acs.cgd.6b01795

    Article  CAS  Google Scholar 

  11. K. Senthil, D. Mangalaraj, S.K. Narayandass, Structural and optical properties of CdS thin films. Appl. Surf. Sci. 169–170, 476–479 (2001). https://doi.org/10.1016/S0169-4332(00)00732-7

    Article  Google Scholar 

  12. P. Taneja, P. Vasa, P. Ayyub, Chemical passivation of sputter-deposited nanocrystalline CdS thin films. Mater. Lett. 54, 343–347 (2002). https://doi.org/10.1016/S0167-577X(01)00590-0

    Article  CAS  Google Scholar 

  13. E.S. Yousef, A. El-Adawy, N. El Koshkhany, E.R. Shaaban, Optical and acoustic properties of TeO2/WO3 glasses with small amount of additive ZrO2. J. Phys. Chem. Solids 67, 1649–1655 (2006). https://doi.org/10.1016/j.jpcs.2006.02.014

    Article  CAS  Google Scholar 

  14. M. Baykul, A. Balcioglu, AFM and SEM studies of CdS thin films produced by an ultrasonic spray pyrolysis method. Microelectron. Eng. 51–52, 703–713 (2000). https://doi.org/10.1016/S0167-9317(99)00534-1

    Article  Google Scholar 

  15. M. Tsuji, T. Aramoto, H. Ohyama, T. Hibino, K. Omura, Characterization of CdS thin-film in high efficient CdS/CdTe solar cells. Jpn. J. Appl. Phys. 39, 3902–3906 (2000). https://doi.org/10.1143/JJAP.39.3902

    Article  CAS  Google Scholar 

  16. J. Nishino, S. Chatani, Y. Uotani, Y. Nosaka, Electrodeposition method for controlled formation of CdS films from aqueous solutions. J. Electroanal. Chem. 473, 217–222 (1999). https://doi.org/10.1016/S0022-0728(99)00250-8

    Article  CAS  Google Scholar 

  17. R. Padmavathy, N. Rajesh, A. Arulchakkaravarthi, R. Gopalakrishnan, P. Santhanaraghavan, P. Ramasamy, Enhancement of photochemical deposition (PCD) and analysis of surface spread of CdS crystalline thin films. Mater. Lett. 53, 321–325 (2002). https://doi.org/10.1016/S0167-577X(01)00500-6

    Article  CAS  Google Scholar 

  18. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  19. R. A. Young, in The Rietveld Method, International Union Crystallography (Oxford University Press, Oxford, 1993)

  20. R. Devi, P.K. Kalita, P. Purakayastha, B.K. Sarma, Growth and transport properties of nanocrystalline CdS thin film. J. Optoelectron. Adv. Mater. 10, 3077–3082 (2008)

    CAS  Google Scholar 

  21. F. Chen, W. Jie, X. Cai, Effects of supersaturation on CdS film growth from dilute solutions on glass substrate in chemical bath deposition process. Thin Solid Films 516, 2823–2828 (2008). https://doi.org/10.1016/j.tsf.2007.04.167

    Article  CAS  Google Scholar 

  22. J. Ximello-Quiebras, Physical properties of chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 82, 263–268 (2004). https://doi.org/10.1016/j.solmat.2004.01.023

    Article  CAS  Google Scholar 

  23. B. Sankapal, R. Mane, C. Lokhande, Deposition of CdS thin films by the successive ionic layer adsorption and reaction (SILAR) method. Mater. Res. Bull. 35, 177–184 (2000). https://doi.org/10.1016/S0025-5408(00)00210-5

    Article  CAS  Google Scholar 

  24. A.L. Patterson, The Scherrer FORMULA for X-RAY PARTICLE SIZE determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  25. O.A. Fouad, S.A. Makhlouf, G.A.M. Ali, A.Y. El-Sayed, Cobalt/silica nanocomposite via thermal calcination-reduction of gel precursors. Mater. Chem. Phys. 128, 70–76 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.072

    Article  CAS  Google Scholar 

  26. T.K. Pathak, V. Kumar, L.P. Purohit, H.C. Swart, R.E. Kroon, Substrate dependent structural, optical and electrical properties of ZnS thin films grown by RF sputtering. Phys. E: Low-Dimens. Syst. Nanostruct. 84, 530–536 (2016). https://doi.org/10.1016/j.physe.2016.06.020

    Article  CAS  Google Scholar 

  27. H. Fujiwara, Spectroscopic ellipsometry: principles and applications, Wiley (2007). https://www.wiley.com/en-us/Spectroscopic+Ellipsometry%3A+Principles+and+Applications-p-9780470016084

  28. M. Alzaid, W.S. Mohamed, M. El-Hagary, E.R. Shaaban, N.M.A. Hadia, Optical properties upon ZnS film thickness in ZnS/ITO/glass multilayer films by ellipsometric and spectrophotometric investigations for solar cell and optoelectronic applications. Opt. Mater. (Amst.) 118, 111228 (2021). https://doi.org/10.1016/j.optmat.2021.111228

    Article  CAS  Google Scholar 

  29. M. Emam-Ismail, M. El-Hagary, E.R. Shaaban, S.H. Moustafa, G.M.A. Gad, Spectroscopic ellipsometry and morphological characterizations of nanocrystalline Hg1-xMnxO oxide diluted magnetic semiconductor thin films. Ceram. Int. 45(7), 8380–8387 (2019). https://doi.org/10.1016/j.ceramint.2019.01.146

    Article  CAS  Google Scholar 

  30. E.R. Shaaban, M. El-Hagary, M. Emam-Ismail, A. Matar, I.S. Yahia, Spectroscopic ellipsometry and magneto-transport investigations of Mn-doped ZnO nanocrystalline films deposited by a non-vacuum sol–gel spin-coating method. Mater. Sci. Eng. B 178, 183–189 (2013). https://doi.org/10.1016/j.mseb.2012.11.005

    Article  CAS  Google Scholar 

  31. G.E. Jellison Jr., Spectroscopic ellipsometry data analysis: measured versus calculated quantities. Thin Solid Films 313–314, 33–39 (1998). https://doi.org/10.1016/S0040-6090(97)00765-7

    Article  Google Scholar 

  32. M. Zhao, R. Tong, X. Chen, T. Ma, J. Dai, J. Lian, J. Ye, Ellipsometric determination of anisotropic optical constants of single phase Ga2O3 thin films in its orthorhombic and monoclinic phases. Opt. Mater. (Amst). 102, 109807 (2020). https://doi.org/10.1016/j.optmat.2020.109807

    Article  CAS  Google Scholar 

  33. M. Emam-Ismail, M. El-Hagary, H.M. El-Sherif, A.M. El-Naggar, M.M. El-Nahass, Spectroscopic ellipsometry and morphological studies of nanocrystalline NiO and NiO/ITO thin films deposited by e-beams technique. Opt. Mater. (Amst). 112, 110763 (2021). https://doi.org/10.1016/j.optmat.2020.110763

    Article  CAS  Google Scholar 

  34. G.A. Niklasson, C.G. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20, 26 (1981). https://doi.org/10.1364/AO.20.000026

    Article  CAS  Google Scholar 

  35. S. Tolansky, Multiple-beam interference microscopy of metals (Academic Press INC LTD, England, 1970)

    Google Scholar 

  36. K. Senthil, D. Mangalaraj, S. Narayandass, S. Adachi, Optical constants of vacuum-evaporated cadmium sulphide thin films measured by spectroscopic ellipsometry. Mater. Sci. Eng. B 78, 53–58 (2000). https://doi.org/10.1016/S0921-5107(00)00510-9

    Article  Google Scholar 

  37. X. Wu, F. Lai, L. Lin, J. Lv, B. Zhuang, Q. Yan, Z. Huang, Optical inhomogeneity of ZnS films deposited by thermal evaporation. Appl. Surf. Sci. 254, 6455–6460 (2008). https://doi.org/10.1016/j.apsusc.2008.04.023

    Article  CAS  Google Scholar 

  38. E.R. Shaaban, M. El-Hagary, M. Emam-Ismail, M.B. El-Den, Optical band gap, refractive index dispersion and single-oscillator parameters of amorphous Se 70 S 30–x Sb x semiconductor thin films. Philos. Mag. 91, 1679–1692 (2011). https://doi.org/10.1080/14786435.2010.544683

    Article  CAS  Google Scholar 

  39. P. Prathap, N. Revathi, Y.P. Venkata Subbaiah, K.T. Ramakrishna Reddy, Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films. J. Phys. Condens. Matter. 20, 035205 (2008). https://doi.org/10.1088/0953-8984/20/03/035205

    Article  CAS  Google Scholar 

  40. S. Mathew, K.P. Vijayakumar, Ellipsometric studies of microscopic surface roughness of CdS thin films. Bull. Mater. Sci. 17, 421–427 (1994). https://doi.org/10.1007/BF02745230

    Article  CAS  Google Scholar 

  41. S. Mathew, P.S. Mukerjee, K.P. Vijayakumar, Optical and surface properties of spray-pyrolysed CdS thin films. Thin Solid Films 254, 278–284 (1995). https://doi.org/10.1016/0040-6090(94)06257-L

    Article  CAS  Google Scholar 

  42. J. Tauc, Amorphous and liquid semiconductors (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  43. T.K. Tran, W. Park, W. Tong, M.M. Kyi, B.K. Wagner, C.J. Summers, Photoluminescence properties of ZnS epilayers. J. Appl. Phys. 81, 2803–2809 (1997). https://doi.org/10.1063/1.363937

    Article  CAS  Google Scholar 

  44. M.S. Bashar, R. Matin, M. Sultana, A. Siddika, M. Rahaman, M.A. Gafur, F. Ahmed, Effect of rapid thermal annealing on structural and optical properties of ZnS thin films fabricated by RF magnetron sputtering technique. J. Theor. Appl. Phys. 14, 53–63 (2020). https://doi.org/10.1007/s40094-019-00361-5

    Article  Google Scholar 

  45. V.H. Choudapur, S.B. Kapatkar, A.B. Raju, Structural and optoelectronic properties of zinc sulfide thin films synthesized by Co-precipitation method. Acta Chem. Iasi 27, 287–302 (2019). https://doi.org/10.2478/achi-2019-0018

    Article  CAS  Google Scholar 

  46. N. El-Kabnay, E.R. Shaaban, N. Afify, A.M. Abou-sehly, Optical and physical properties of different composition of InxSe1−x thin films. Phys. B Condens. Matter. 403, 31–36 (2008). https://doi.org/10.1016/j.physb.2007.08.016

    Article  CAS  Google Scholar 

  47. O.L. Arenas, M.T.S. Nair, P.K. Nair, Chemical bath deposition of ZnS thin films and modification by air annealing. Semicond. Sci. Technol. 12, 1323–1330 (1997). https://doi.org/10.1088/0268-1242/12/10/022

    Article  CAS  Google Scholar 

  48. J. Lee, S. Lee, S. Cho, S. Kim, I.Y. Park, Y.D. Choi, Role of growth parameters on structural and optical properties of ZnS nanocluster thin films grown by solution growth technique. Mater. Chem. Phys. 77, 254–260 (2003). https://doi.org/10.1016/S0254-0584(01)00563-6

    Article  CAS  Google Scholar 

  49. A.E. Rakhshani, A.S. Al-Azab, Characterization of CdS films prepared by chemical-bath deposition. J. Phys. Condens. Matter. 12, 8745–8755 (2000). https://doi.org/10.1088/0953-8984/12/40/316

    Article  CAS  Google Scholar 

  50. S.A. Al Kuhaimi, Influence of preparation technique on the structural, optical and electrical properties of polycrystalline CdS films. Vacuum 51, 349–355 (1998). https://doi.org/10.1016/S0042-207X(98)00112-2

    Article  Google Scholar 

  51. O. Zelaya-Angel, J.J. Alvarado-Gil, R. Lozada-Morales, H. Vargas, A. Ferreira da Silva, Band-gap shift in CdS semiconductor by photoacoustic spectroscopy: evidence of a cubic to hexagonal lattice transition. Appl. Phys. Lett. 64, 291–293 (1994). https://doi.org/10.1063/1.111184

    Article  CAS  Google Scholar 

  52. K.L. Chopra, Thin film phenomena (Krieger Publishing Company, Krieger, 1979)

    Google Scholar 

  53. H. Oumous, H. Hadiri, Optical and electrical properties of annealed CdS thin films obtained from a chemical solution. Thin Solid Films 386, 87–90 (2001). https://doi.org/10.1016/S0040-6090(00)01767-3

    Article  CAS  Google Scholar 

  54. A. Segura, K. Wünstel, A. Chevy, Investigation of impurity levels inn-type indium selenide by means of Hall effect and deep level transient spectroscopy. Appl. Phys. A Solids Surf. 31, 139–145 (1983). https://doi.org/10.1007/BF00624719

    Article  Google Scholar 

Download references

Acknowledgements

This work was produced with the financial support of the Academy of Scientific Research and Technology of Egypt; ScienceUP/GradeUp initiative: Grant Agreement No (6505). Its contents are the sole responsibility of the authors and do not necessarily reflect the views of the Academy of Scientific Research and Technology.

Author information

Authors and Affiliations

Authors

Contributions

ERS: Conceptualization, investigation, calculations, writing—original draft. MAO: Investigation and contribution to writing. AAO: investigation and editing. MMS: Investigation and taking measurements. KIA: Supervising and writing—reviewing and editing.

Corresponding authors

Correspondence to Essam R. Shaaban or Kamal I. Aly.

Ethics declarations

This research is in real compliance with ethical standards, because none of the results obtained by the research team contradicts any previously published results.

Conflict of interest

The authors declare that they have no known competing scientific, financial, or personal interests in relationships that could appear to influence the work described in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, E.R., Osman, M.A., Osman, A.A. et al. Influential role of CdS film thickness in improving CdS/CdTe junction performance for solar cells: structural, optical, and electrical characterizations. J Mater Sci: Mater Electron 33, 4051–4063 (2022). https://doi.org/10.1007/s10854-021-07598-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07598-4

Navigation