Skip to main content
Log in

Solution processed low-voltage metal-oxide transistor by using TiO2/Li–Al2O3 stacked gate dielectric

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A solution processed top-contact bottom-gated SnO2 thin-film transistor (TFT) has been fabricated using a TiO2/Li–Al2O3 bilayer stacked gate dielectric that show operating voltage of this TFT within 2.0 V. It is observed that the bilayer dielectric has much higher areal capacitance with lower leakage current density that significantly improve the overall device performance of TFT. The TFT with bilayer gate dielectric shows an effective carrier mobility (μsat) of 9.2 cm2 V−1 s−1 with an on/off ratio of 7.1 × 103 which are significantly higher with respect to the TFT with a single layer Li–Al2O3 gate dielectric. The origin of this improvement is due to the Schottky junction between the highly doped silicon (p++-Si) and TiO2 of bilayer stacked dielectric that induced electrons to the channel which reduces the dielectric/semiconductor interface trap-state. This investigation opens a new path to develop TFT device performance using a suitable bilayer stack of gate dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Zaumseil, H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors. Chem. Rev 107(4), 1296–1323 (2007)

    Article  CAS  Google Scholar 

  2. C. Kim, A. Facchetti, T.J. Marks, Gate dielectric microstructural control of pentacene film growth mode and field-effect transistor performance. Adv. Mater. 19(18), 2561–2566 (2007)

    Article  CAS  Google Scholar 

  3. J. Robertson, R.M. Wallace, High-K materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. 88, 1–41 (2015)

    Article  Google Scholar 

  4. Committee, I. R., International technology roadmap for semiconductors. 2008.

  5. B.N. Pal, B.M. Dhar, K.C. See, H.E. Katz, Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 8(11), 898 (2009)

    Article  CAS  Google Scholar 

  6. N.K. Chourasia, A. Sharma, V. Acharya, N. Pal, S. Biring, B.N. Pal, Solution processed low band gap ion-conducting gate dielectric for low voltage metal oxide transistor. J. Alloys Compd. 777, 1124–1132 (2019)

    Article  CAS  Google Scholar 

  7. B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks, A. Facchetti, High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118(11), 5690–5754 (2018)

    Article  CAS  Google Scholar 

  8. A. Sharma, N.K. Chourasia, A. Sugathan, Y. Kumar, S. Jit, S.-W. Liu, A. Pandey, S. Biring, B.N. Pal, Solution processed Li5AlO4 dielectric for low voltage transistor fabrication and its application in metal oxide/quantum dot heterojunction phototransistors. J. Mater. Chem. C 6(4), 790–798 (2018)

    Article  CAS  Google Scholar 

  9. A. Sharma, N.K. Chourasia, V. Acharya, N. Pal, S. Biring, S.-W. Liu, B.N. Pal, Ultra-low voltage metal oxide thin film transistor by low-temperature annealed solution processed LiAlO2 gate dielectric. Electron. Mater. Lett. 16(1), 22–34 (2020)

    Article  CAS  Google Scholar 

  10. S. Mohsenifar, M. Shahrokhabadi, Gate stack high-κ materials for Si-based MOSFETs past, present, and futures. Microelectron. Solid State Electron. 2, 5 (2015)

    Google Scholar 

  11. Q. Li, S. Li, D. Yang, W. Su, Y. Wang, W. Zhou, H. Liu, S. Xie, Designing hybrid gate dielectric for fully printing high-performance carbon nanotube thin film transistors. Nanotechnology 28(43), 435203 (2017)

    Article  Google Scholar 

  12. H.S. Kim, P.D. Byrne, A. Facchetti, T.J. Marks, High performance solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 130(38), 12580–12581 (2008)

    Article  CAS  Google Scholar 

  13. J. Martins, A. Kiazadeh, J.V. Pinto, A. Rovisco, T. Gonçalves, J. Deuermeier, E. Alves, R. Martins, E. Fortunato, P. Barquinha, Ta2O5/SiO2 multicomponent dielectrics for amorphous oxide TFTs. Electron. Mater. 2(1), 1–16 (2021)

    Google Scholar 

  14. J.-W. Jo, K.-H. Kim, J. Kim, S.G. Ban, Y.-H. Kim, S.K. Park, High-mobility and hysteresis-free flexible oxide thin-film transistors and circuits by using bilayer sol–gel gate dielectrics. ACS Appl. Mater. Interfaces 10(3), 2679–2687 (2018)

    Article  CAS  Google Scholar 

  15. K. Pak, J. Choi, C. Lee, S.G. Im, Low-power, flexible nonvolatile organic transistor memory based on an ultrathin bilayer dielectric stack. Adv. Electron. Mater. 5(4), 1800799 (2019)

    Article  Google Scholar 

  16. J.-P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, J.W. Seo, High-K dielectrics for the gate stack. J. Appl. Phys. 100(5), 051610 (2006)

    Article  Google Scholar 

  17. S.K. Garlapati, N. Mishra, S. Dehm, R. Hahn, R. Kruk, H. Hahn, S. Dasgupta, Electrolyte-gated, high mobility inorganic oxide transistors from printed metal halides. ACS Appl. Mater. Interfaces 5(22), 11498–11502 (2013)

    Article  CAS  Google Scholar 

  18. S.K. Garlapati, M. Divya, B. Breitung, R. Kruk, H. Hahn, S. Dasgupta, Printed electronics based on inorganic semiconductors: From processes and materials to devices. Adv. Mater. 30(40), 1707600 (2018)

    Article  Google Scholar 

  19. A. Sharma, N.K. Chourasia, N. Pal, S. Biring, B.N. Pal, Role of electron donation of TiO2 gate interface for developing solution-processed high-performance one-volt metal-oxide thin-film transistor using ion-conducting gate dielectric. J. Phys. Chem. C 123(33), 20278–20286 (2019)

    Article  CAS  Google Scholar 

  20. Y. Liu, P. Guan, B. Zhang, M.L. Falk, H.E. Katz, Ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. Chem. Mater. 25(19), 3788–3796 (2013)

    Article  CAS  Google Scholar 

  21. K. Okamura, D. Nikolova, N. Mechau, H. Hahn, Appropriate choice of channel ratio in thin-film transistors for the exact determination of field-effect mobility. Appl. Phys. Lett. 94(18), 183503 (2009)

    Article  Google Scholar 

  22. G. Adamopoulos, A. Bashir, S. Thomas, W.P. Gillin, S. Georgakopoulos, M. Shkunov, M.A. Baklar, N. Stingelin, R.C. Maher, L.F. Cohen, Spray-deposited Li-doped ZnO transistors with electron mobility exceeding 50 cm2/Vs. Adv. Mater. 22(42), 4764–4769 (2010)

    Article  CAS  Google Scholar 

  23. E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012)

    Article  CAS  Google Scholar 

  24. H.H. Choi, K. Cho, C.D. Frisbie, H. Sirringhaus, V. Podzorov, Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17(1), 2–7 (2018)

    Article  CAS  Google Scholar 

  25. N. Cherukupally, M. Divya, S. Dasgupta, A comparative study on printable solid electrolytes toward ultrahigh current and environmentally stable thin film transistors. Adv. Electron. Mater. 6(12), 2000788 (2020)

    Article  CAS  Google Scholar 

  26. C. Zhu, A. Liu, G. Liu, G. Jiang, Y. Meng, E. Fortunato, R. Martins, F. Shan, Low-temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. J. Mater. Chem. C 4(45), 10715–10721 (2016)

    Article  CAS  Google Scholar 

  27. J. Jhaveri, A.H. Berg, J.C. Sturm, Isolation of hole versus electron current at p-Si/TiO2 selective contact using a heterojunction bipolar transistor structure. IEEE J. Photovolt. 8(3), 726–732 (2018)

    Article  Google Scholar 

  28. S. Avasthi, W.E. McClain, G. Man, A. Kahn, J. Schwartz, J.C. Sturm, Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl. Phys. Lett. 102(20), 203901 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the "Science and Engineering Research Board," India (Grant No. EMR/2015/000689). The authors are grateful to the Central Instrument Facility Centre, IIT (BHU), for providing the AFM measurement facility. Nila Pal thanks DST-SERB for providing SRF fellowship, and Utkarsh Pandey thanks IIT (BHU) for providing Ph.D. fellowship.

Funding

Funding was provided by Science and Engineering Research Board (Grant Nos. CRG/2019/001826 and EMR/2015/000689).

Author information

Authors and Affiliations

Authors

Contributions

NP did most of the experimental research work, manuscript writing, data analysis. UP did partial experimental research work and data analysis. SB gave some measurement facilities and jointly figure out the outline of this work. BNP supervise this research work.

Corresponding authors

Correspondence to Sajal Biring or Bhola N. Pal.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, N., Pandey, U., Biring, S. et al. Solution processed low-voltage metal-oxide transistor by using TiO2/Li–Al2O3 stacked gate dielectric. J Mater Sci: Mater Electron 33, 9580–9589 (2022). https://doi.org/10.1007/s10854-021-07581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07581-z

Navigation