Skip to main content
Log in

Facile synthesis of Mn-doped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present article, the pure and different concentrations as 1, 2, 3, and 5 wt.% Mn-doped ZnO (Mn:ZnO) nanoparticles were synthesized by combustion route. XRD of the prepared samples were fitted using the Lorentz function and the obtained data files were used to calculate the crystallite size. The crystallite sizes were found to be 25.3 nm, 34.6 nm, 31.1 nm, 32.5 nm, and 33.3 nm for pure, 1 wt.%, 2 wt.%, 3 wt.%, and 5 wt.% Mn-doped ZnO NPs, respectively. The agglomerated spherical shape morphology with different particles sizes of pure and 1, 3, and 5 wt.% Mn:ZnO NPs were observed by scanning electron microscopy (SEM). The vibrational phonon modes observed at 99–100, 326–331, 435–438, 573–585, 676-681, and 1142–1151 cm−1 were attributed to the presence of intrinsic defects in the samples. The optical band gaps 3.280, 3.218, 3.103, 3.024, and 2.922 eV of pure, 1 wt. %, 2 wt.%, 3 wt.%, and 5 wt.% Mn-doped ZnO NPs were obtained using Kubelka–Munk function, respectively. PL emission spectra exhibit the peaks at 354, 451, 469, 482, 492, and 560 nm under 325 nm excitation wavelength, while emission peaks observed at 389, 451, 468–474, 492, and 557 nm under 350 nm excitation wavelength. The dielectric constant and dielectric losses of the prepared NPs were observed in the range 27.6–23.4 and 29–14, respectively. The greater values of capacitance and impedance of the prepared samples were recorded as 27.3–17.3 (pF) and 2.75 (MΩ)-273 (Ω) over the entire range of the logarithmic frequency. The obtained results of Mn:ZnO nanoparticles were found suitable for the potential applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El Mir, Magnetic and optical properties of manganese doped ZnO nanoparticles synthesized by sol-gel technique. Superlattices Microstruct. 60, 139–147 (2013)

    Article  CAS  Google Scholar 

  2. J.A. Anta, E. Guillén, R. Tena-Zaera, ZnO-based dye-sensitized solar cells. J. Phys. Chem. C 116, 11413–11425 (2012)

    Article  CAS  Google Scholar 

  3. V.D. Mote, J.S. Dargad, Y. Purushotham, B.N. Dole, Effect of doping on structural, physical, morphological and optical properties of Zn1-xMnxO nano-particles. Ceram. Int. 41, 15153–15161 (2015)

    Article  CAS  Google Scholar 

  4. Z.W. Jin, Y.-Z. Yoo, T. Sekiguchi, T. Chikyow, Blue and ultraviolet cathodoluminescence from Mn-doped epitaxial ZnO thin films. Appl. Phys. Lett. 83, 39 (2003)

    Article  CAS  Google Scholar 

  5. V.A. Karpina, V.I. Lazorenko, C.V. Lashkarev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A. Pustovoytov, AJu. Karpenko, S.A. Eremin, P.M. Lytvyn, Zinc oxide – analogue of GaN with New perspective possibilities. Cryst. Res. Technol. 39, 980–992 (2004)

    Article  CAS  Google Scholar 

  6. L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO – Nanostructures, defects, and devices. Mater. Today. 10, 40–48 (2007)

    Article  CAS  Google Scholar 

  7. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  8. Z. Qifeng, Christopher S. Dandeneau, Z. Xiaoyuan, C. Guozhong, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)

    Article  Google Scholar 

  9. A. Ulyankina, I. Leontyev, M. Avramenko, D. Zhigunov, N. Smirnova, Large-scale synthesis of ZnO nanostructures by pulse electrochemical method and their photocatalytic properties. Mater. Sci. Semicond. Process. 76, 7–13 (2018)

    Article  CAS  Google Scholar 

  10. J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Physica B Condens. Matter. 416, 33–38 (2013)

    Article  CAS  Google Scholar 

  11. V.D. Mote, Y. Purushotham, B.N. Dole, Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synthesized by sol–gel method. Mater. Des. 96, 99–105 (2016)

    Article  CAS  Google Scholar 

  12. S. Guo, Q. Hou, C. Zhao, Y. Zhang, Study of the effect of Cu heavy doping on band gap and absorption spectrum of ZnO. Chem. Phys. Lett. 614, 15–20 (2014)

    Article  CAS  Google Scholar 

  13. S. Banerjee, M. Mandal, N. Gayathri, M. Sardar, Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl. Phys. Lett. 91, 182501 (2007)

    Article  Google Scholar 

  14. P.J. Wellmann, J.M. Garcia, J.-L. Feng, Formation of nanoscale ferromagnetic MnAs crystallites in low-temperature grown GaAs. App. Phys. Left. 71, 2532 (1997)

    Article  CAS  Google Scholar 

  15. R. Nasser, W.B.H. Othmen, H. Elhouichet, Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 45, 8000–8007 (2019)

    Article  CAS  Google Scholar 

  16. B. Hartiti, M. Siadat, E. Comini, H.M.M.M. Arachchige, S. Fadili, P. Thevenin, Acetone sensor based on Ni doped ZnO nanostructues: growth and sensing capability. J. Mater. Sci. 30, 7681–7690 (2019)

    Google Scholar 

  17. D. Sharma, R. Jha, Transition metal (Co, Mn) co-doped ZnO nanoparticles: effect on structural and optical properties. J. Alloys Compd. 698, 532–538 (2017)

    Article  CAS  Google Scholar 

  18. N.X. Sang, N.M. Quan, N.H. Tho, N.T. Tuan, T.T. Tung, Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance. Semicond. Sci. Technol. 34, 25013 (2019)

    Article  CAS  Google Scholar 

  19. C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, Synthesis, optical and electrical properties of Mn doped ZnO nanoparticles. J Mater Sci: Mater Electron. 29, 7020–7030 (2018)

    CAS  Google Scholar 

  20. L. Zhang, X. Zhu, Z. Wang, S. Yun, T. Guo, J. Zhang, J. Chen, Synthesis of ZnO doped high valence S element and study of photogenerated charges properties. RSC Adv. 9, 4422–4427 (2019)

    Article  CAS  Google Scholar 

  21. Y. Zong, Y. Sun, S. Meng, Y. Wang, H. Xing, X. Li, X. Zheng, Doping effect and oxygen defects boost room temperature ferromagnetism of Co-doped ZnO nanoparticles: experimental and theoretical studies. RSC Adv. 9, 23012–23020 (2019)

    Article  CAS  Google Scholar 

  22. H. Liu, X. Zhang, L. Li, Y.X. Wang, K.H. Gao, Z.Q. Li, R.K. Zheng, S.P. Ringer, B. Zhang, X.X. Zhang, Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Appl. Phys. Lett. 91, 072511 (2007)

    Article  Google Scholar 

  23. T. Guo, Y. Zhang, Y. Luo, C.W. Nan, Y.H. Lin, Ferromagnetic and optical properties of Co doped ZnO hexagonal bipods. J. Appl. Phys. 112, 083916 (2012)

    Article  Google Scholar 

  24. O.D. Jayakumar, H.G. Salunke, R.M. Kadam, M. Mohapatra, G. Yaswant, S.K. Kulshreshtha, Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology 17, 1278 (2006)

    Article  CAS  Google Scholar 

  25. S. Kumar, Y. J. Kim, B. H. Koo, S. K. Sharma, J. M. Vargas, M. Knobel, S. Gautam, K. H. Chae, D. K. Kim, Y. K. Kim 2009 Structural and magnetic properties of chemically synthesized Fe doped ZnO J. Appl. Phys. 105: e07C520

  26. R. Boubekri, Z. Beji, K. Elkabous, F. Herbst, G. Viau, S. Ammar, F. Fiévet, H.J. Von Bardeleben, A. Mauger, Annealing effects on Zn(Co)O: from para- to ferromagnetic behavior. J. Chem. Mater. 21, 843–855 (2009)

    Article  CAS  Google Scholar 

  27. Y.K. Lakshmi, K. Srinivas, B. Sreedhar, M.M. Raja, M. Vithal, P.V. Reddy, Structural, optical and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors. J. Mater. Chem. Phys. 113, 749–755 (2009)

    Article  CAS  Google Scholar 

  28. V. Pazhanivelu, A. Paul Blessington Selvadurai, R. Murugaraj 2015 Sintering Effect on Structural, Optical and Unusual Magnetic Behaviour in Zn0.95Co0.05O-Based DMS Materials. J. Supercond. Nov. Magn. 28: e2575

  29. G. Srinet, R. Kumar, V. Sajal, Structural, optical, vibrational, and magnetic properties of sol-gel derived Ni doped ZnO nanoparticles. J. Appl. Phys. 114, 033912 (2013)

    Article  Google Scholar 

  30. K. Samanta, P. Bhattacharya, R.S. Katiyar, Microstructural and ferromagnetic properties of Zn1−xCuxO thin films. J. Appl. Phys. 105, 113929 (2009)

    Article  Google Scholar 

  31. T.A. Abdel-Baset, M. Abdel-Hafiez, Effect of metal dopant on structural and magnetic properties of ZnO nanoparticles. J Mater Sci: Mater Electron. 32, 16153–16165 (2021)

    CAS  Google Scholar 

  32. R. Elilarassi, G. Chandrasekaran, Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles. J Mater Sci: Mater Electron 22, 751–756 (2011)

    CAS  Google Scholar 

  33. R. Elilarassi, G. Chandrasekaran, Influence of Co-doping on the structural, optical, and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J Mater Sci: Mater Electron. 24, 96–105 (2013)

    CAS  Google Scholar 

  34. R. Elilarassi, G. Chandrasekaran, Structural, optical and magnetic characterization of Cu-doped ZnO nanoparticles synthesized using solid state reaction method. J Mater Sci: Mater Electron. 21, 1168–1173 (2010)

    CAS  Google Scholar 

  35. V. Pazhanivelu, A.P.B. Selvadurai, R. Murugaraj, I. Panneer Muthuselvam, F.C. Chou, Influence of Co ions doping in structural, vibrational, optical and magnetic properties of ZnO nanoparticles. J Mater Sci: Mater Electron. 27, 8580–8589 (2016)

    CAS  Google Scholar 

  36. G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, Comparative study of structural and magnetic properties of transition metal (Co, Ni) doped ZnO nanoparticles. J Mater Sci: Mater Electron. 26, 7205–7213 (2015)

    CAS  Google Scholar 

  37. A. Samanta, M.N. Goswami, P.K. Mahapatra, Structural, optical, dielectric, magnetic and magnetoelectric properties of Co-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 27, 12271–12278 (2016)

    CAS  Google Scholar 

  38. S.B. Rana, R.P.P. Singh, Sandeep arya, structural, optical, magnetic and antibacterial study of pure and cobalt doped ZnO nanoparticles. J Mater Sci: Mater Electron 28, 2660–2672 (2017)

    CAS  Google Scholar 

  39. H. Ji, C. Cai, S. Zhou, W. Liu, Structure, photoluminescence, and magnetic properties of Co-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 29, 12917–12926 (2018)

    CAS  Google Scholar 

  40. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, V.P.S. Awana, Structural, vibrational, optical and magnetic properties of sol-gel derived Nd doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 5102–5110 (2013)

    CAS  Google Scholar 

  41. R. Jeyachitra, V. Senthilnathan, T.S. Senthil, Studies on electrical behavior of Fe doped ZnO nanoparticles prepared via co-precipitation approach for photo-catalytic application. J Mater Sci: Mater Electron. 29, 1189–1197 (2018)

    CAS  Google Scholar 

  42. J. El Ghoul, Synthesis of vanadium doped ZnO nanoparticles by sol–gel method and its characterization. J Mater Sci: Mater Electron. 27, 2159–2165 (2016)

    Google Scholar 

  43. R. Slama, J. El Ghoul, I. Ghiloufi, K. Omri, L. El Mir, A. Houas, Synthesis and physico-chemical studies of vanadium doped zinc oxide nanoparticles and its photocatalysis. J Mater Sci: Mater Electron. 27, 8146–8153 (2016)

    CAS  Google Scholar 

  44. S. Kumar, V. Singh, A. Tanwar, Structural, morphological, optical and photocatalytic properties of Ag-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 27, 2166–2173 (2016)

    CAS  Google Scholar 

  45. T. Prakash, G. Neri, A. Bonavita, E. Ranjith Kumar, K. Gnanamoorthi, Structural, morphological and optical properties of Bi-doped ZnO nanoparticles synthesized by a microwave irradiation method. J Mater Sci: Mater. Electron. 26, 4913–4921 (2015)

    CAS  Google Scholar 

  46. R.K. Sharma, S. Patel, K.C. Pargaie, Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 035005 (2012)

    Article  Google Scholar 

  47. S.V. Vegesna, V.J. Bhat, D. Bu¨rger, J. Dellith, I. Skorupa, O.G. Schmidt, H. Schmidt 2020 Sci. Rep. 10: e6698

  48. X. Yan, D. Hu, H. Li, L. Li, X. Chong, Y. Wang, Nanostructure and optical properties of M doped ZnO (M=Ni, Mn) thin films prepared by sol–gel process. Phys. B. 406, 3956–3962 (2011)

    Article  CAS  Google Scholar 

  49. M.A. Dar, D. Varshney, Synthesis, structural, optical and dielectric properties of transition metal doped ZnMnO nanoparticles by sol-gel combustion technique. Superlattices Microstruct. 114, 340–354 (2018)

    Article  CAS  Google Scholar 

  50. R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, Synthesis and characterization of Mn-doped ZnO nanocrystals. J. Phys. Chem. B 108, 6303–6310 (2004)

    Article  CAS  Google Scholar 

  51. J. Han, M. Shen, W. Cao, A.M.R. Senos, P.Q. Mantas, Hopping conduction in Mn-doped ZnO. Appl. Phys. Lett. 82, 67 (2003)

    Article  CAS  Google Scholar 

  52. M. Shatnawi, A.M. Alsmadi, I. Bsoul, B. Salameh, M. Mathai, G. Alnawashi, G.M. Alzoubi, F. Al-Dweri, M.S. Bawa’aneh, Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Results Phys. 6, 1064–1071 (2016)

    Article  Google Scholar 

  53. S.K. Neogi, R. Karmakar, A.K. Misra, A. Banerjee, D. Das, S. Bandyopadhyay, Physical properties of antiferromagnetic Mn doped ZnO samples: role of impurity phase. J. Magn. Magn. Mater. 346, 130–137 (2013)

    Article  CAS  Google Scholar 

  54. S.J.K. Vethanathan, M. Brightson, S.M. Sundar, S. Perumal, Synthesis of Mn doped ZnO nanocrystals by solvothermal route and its characterization. Mater. Chem. Phys. 125, 872–875 (2011)

    Article  CAS  Google Scholar 

  55. M.K. Sharma, R.N. Gayen, A.K. Pal, D. Kanjilal, R. Chatterjee, Room temperature ferromagnetism of Mn-doped zinc oxide nanorods prepared by hybrid wet chemical route. J. Alloys Compd. 509, 7259–7266 (2011)

    Article  CAS  Google Scholar 

  56. S. Fabbiyola, L.J. Kennedy, A.A. Dakhel, M. Bououdina, J.J. Vijaya, T. Ratnaji, Structural, microstructural, optical and magnetic properties of Mn-doped ZnO nanostructures. J. Mol. Struct. 1109, 89–96 (2016)

    Article  CAS  Google Scholar 

  57. M. Nirmala, P. Smitha, A. Anukaliani, Optical and electrical properties of undoped and (Mn, Co) co-doped ZnO nanoparticles synthesized by DC thermal plasma method. Superlattices Microstruct. 50, 563–571 (2011)

    Article  CAS  Google Scholar 

  58. S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chinic, V. Sengodan, Influence of Mn doping on the microstructure and optical property of ZnO. J. Mater. Sci. Semicond. Process. 11, 6–12 (2008)

    Article  CAS  Google Scholar 

  59. M. Nakayama, H. Tanaka, K. Masuko, T. Fukushima, A. Ashida, N. Fujimura, Photoluminescence properties peculiar to the Mn-related transition in a lightly alloyed ZnMnO thin film grown by pulsed laser deposition. J. Appl. Phys. Lett. 88, 241908 (2006)

    Article  Google Scholar 

  60. V. Mote, J. Dargad, B. Dole, Effect of Mn doping concentration on structural, morphological and optical studies of ZnO nano-particles. Nanosci. Nanoeng. 1(2), 116–122 (2013)

    Article  Google Scholar 

  61. I. Khan, S. Khan, W. Khan, Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles. Mater Sci Semicond Process. 26, 516–526 (2014)

    Article  CAS  Google Scholar 

  62. C. Belkhaoui, N. Mzabi, H. Smaoui, Investigations on structural, optical and dielectric properties of Mn doped ZnO nanoparticles synthesized by co-precipitation method. Mater. Res. Bull. 111, 70–79 (2019)

    Article  CAS  Google Scholar 

  63. T. Abdel-Baset, S. Saber, S. El-Sayed, Dielectric relaxations and optical properties of Mn-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 31, 20972–20983 (2020)

    CAS  Google Scholar 

  64. Q. Gao, Y. Dai, X. Li, L. Yang, C. Cui, C. Li, Effects of Mn dopant on tuning carrier concentration in Mn doped ZnO nanoparticles synthesized by co-precipitation technique. J Mater Sci: Mater Electron. 29, 3568–3575 (2018)

    CAS  Google Scholar 

  65. G. Srinet, S. Sharma, B. Prajapati, J.M. Siqueiros, Investigations on the physical properties of Mn-modified ZnO samples prepared by sol-gel route. J Mater Sci: Mater Electron. 29, 9930–9941 (2018)

    CAS  Google Scholar 

  66. N.D. Raskar, D.V. Dake, V.A. Mane, E. Stathatos, U. Deshpande, B. Dole, One step synthesis of vertically grown Mn-doped ZnO nanorods for photocatalytic application. J Mater Sci: Mater Electron. 30, 10886–10899 (2019)

    CAS  Google Scholar 

  67. K. Omri, O.M. Lemine, J. El Ghoul, L. El Mir, Sol–gel synthesis and room temperature ferromagnetism in Mn doped ZnO nanocrystals. J Mater Sci: Mater Electron. 26, 5930–5936 (2015)

    CAS  Google Scholar 

  68. M.K. Satheesan, V. Kumar, Influence of Lithium doping on the correlated ferromagnetic ordering and red shift of band gap in weakly Mn-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 27, 6522–6525 (2016)

    CAS  Google Scholar 

  69. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J Mater Sci: Mater Electron. 31, 7335–7347 (2020)

    CAS  Google Scholar 

  70. R. Khan, C.I. Zulfiqar, L.de Araujo, T. Khan, Muneeb-Ur-Rahman, Zia-Ur-Rehman, A. Khan, B. Ullah, S. Fashu, Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures. J Mater Sci: Mater Electron. 29, 9785–9795 (2018)

    CAS  Google Scholar 

  71. M. Zulfiqar, A. Zubair, T. Khan, N. Hua, S. Ilyas, A.M. Fashu, M.A. Afzal, R. Khan. Safeen, Oxygen vacancies induced room temperature ferromagnetism and enhanced dielectric properties in Co and Mn co-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 32, 9463–9474 (2021)

    CAS  Google Scholar 

  72. A. Ali Fatima, S. Devadason, T. Mahalingam, Structural, luminescence and magnetic properties of Mn doped ZnO thin films using spin coating technique. J Mater Sci: Mater Electron. 25, 3466–3472 (2014)

    CAS  Google Scholar 

  73. S. Muthukumaran, R. Gopalakrishnan, Structural, optical and photoluminescence studies of heavily Mn-doped ZnO nanoparticles annealed under Ar atmosphere. J Mater Sci: Mater Electron 23, 1393–1401 (2012)

    CAS  Google Scholar 

  74. S.M. Mousavi, A.R. Mahjoub, R. Abazari, Facile green fabrication of nanostructural Ni-doped ZnO hollow sphere as an advanced photocatalytic material for dye degradation. J. Mol. Liq. 242, 512–519 (2017)

    Article  CAS  Google Scholar 

  75. S. Aksoy, Y. Caglar, Synthesis of Mn doped ZnO nanopowders by MW-HTS and its structural, morphological and optical characteristics. J. Alloys Compd. 781, 929–935 (2019)

    Article  CAS  Google Scholar 

  76. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Comparative study on dielectric and structural properties of undoped Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. J Mater Sci: Mater Electron. 31, 7335–7347 (2020)

    CAS  Google Scholar 

  77. K.V. Chandekar, M. Shkir, A. Khan, B.M. Al-Shehri, M.S. Hamdy, S. AlFaify, M.A. El-Toni, A. Aldalbahi, A.A. Ansari, H. Ghaithan, A facile one-pot flash combustion synthesis of La@ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. J. Photochem. Photobiol. A: Chem. 395, 112465 (2020)

    Article  CAS  Google Scholar 

  78. K.V. Mohd Shkir, Badria M. Chandekar, A. Alshehri, S. AlFaify. Khan, Mohamed S. Hamdy, A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811–1823 (2020)

    Article  Google Scholar 

  79. M.S. Hamdy, K.V. Chandekar, Mohd. Shkir, S. AlFaify, Essam H. Ibrahim, Zubair Ahmad, Mona Kilany, Badria M. Al-Shehri, Khadijah S. Al-Namshah, Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. J Nanostruct Chem. 11, 147–163 (2021)

    Article  CAS  Google Scholar 

  80. K.V. Chandekar, M. Shkir, B.M. Al-Shehri, S. AlFaify, R.G. Halor, A. Khan, K.S. Al-Namshah, M.S. Hamdy, Visible light sensitive Cu doped ZnO: facile synthesis, characterization and high photocatalytic response. Mater. Charact. 165, 110387 (2020)

    Article  CAS  Google Scholar 

  81. K.V. Chandekar, Mohd. Shkir, S. AlFaify, Badria M. Al-Shehri, Khadijah S. Al-Namshah, Mohamed S. Hamdy, A noticeable consistent improvement in photocatalytic efficiency of hazardous textile dye through facile flash combustion synthesized Li-doped ZnO nanoparticles. J Mater Sci: Mater Electron. 32, 3437–3450 (2021)

    CAS  Google Scholar 

  82. T.C. Damen, S.P.S. Porto, B. Tell, Raman effect in zinc oxide. Phys Rev 142, 570 (1966)

    Article  CAS  Google Scholar 

  83. F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, A. Polian, High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B. 65, 092101 (2002)

    Article  Google Scholar 

  84. R. Jothilakshmi, V. Ramakrishnan, R. Thangavel, J. Kumar, A. Saruac, M. Kuball, Micro-Raman scattering spectroscopy study of Li-doped and undoped ZnO needle crystals. J. Raman Spectrosc. 40, 556–561 (2009)

    Article  CAS  Google Scholar 

  85. S. Guo, Z. Du, S. Dai, Analysis of Raman modes in Mn-doped ZnO nanocrystals. Phys. Status Solidi B 246, 2329–2332 (2009)

    Article  CAS  Google Scholar 

  86. L. Yang, Y. Tang, A. Hu, X. Chen, K. Liang, L. Zhang, Raman scattering and luminescence study on arrays of ZnO doped with Tb3+. Phys B. 403, 2230–2234 (2008)

    Article  CAS  Google Scholar 

  87. G.L. Kabongo, G.H. Mhlongo, T. Malwela, B.M. Mothudi, K.T. Hillie, M.S. Dhlamini, Microstructural and photoluminescence properties of sol–gel derived Tb3+ doped ZnO nanocrystals. J Alloy Compd. 591, 156–163 (2014)

    Article  CAS  Google Scholar 

  88. D. Montenegro, V. Hortelano, O. Martínez, M. Martínez-Tomas, V. Sallet, V. Muñoz Sanjosé, J. Jiménez, Non-radiative recombination centres in catalyst-free ZnO nanorods grown by atmospheric-metal organic chemical vapour deposition. J. Phys. D Appl. Phys. 46, 235302 (2013)

    Article  Google Scholar 

  89. K. Samanta, P. Bhattacharya, R.S. Katiyar, W. Iwamoto, P.G. Pagliuso, C. Rettori, Raman scattering studies in dilute magnetic semiconductor Zn1−xCoxO. Phys. Rev. B. 73, 245213 (2006)

    Article  Google Scholar 

  90. J. Li, F. Luo, Q. Zhao, Z. Li, H. Yuanb, D. Xiao, Coprecipitation fabrication and electrochemical performances of coral-like mesoporous NiO nanobars. J. Mater. Chem. A 2, 4690–4697 (2014)

    Article  CAS  Google Scholar 

  91. M. Robles-Águila, J. Luna-López, Á. Hernández de la Luz, J. Martínez-Juárez, M. Rabanal, Curr. Comput.-Aided Drug Des. 8, 406 (2018)

    Google Scholar 

  92. F. Kubelka, Munk, A contribution to the optics of pigments. Z. Tech. Phys. 12, 593–599 (1931)

    Google Scholar 

  93. G. Kortum, W. Braun, G. Herzog, Principles and techniques of diffuse-reflectance spectroscopy. Angew. Chem. Int. Ed. Engl. 2, 333–341 (1963)

    Article  Google Scholar 

  94. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S. 53, 18–22 (2007)

    CAS  Google Scholar 

  95. X. Zhao, J.Y. Lee, C.R. Kim, J.H. Heo, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, W.G. Jung, C.S. Son, B.C. Shin, W.J. Lee, S.T. Tan, J. Zhao, X. Sun, Dependence of the properties of hydrothermally grown ZnO on precursor concentration. Physica E 41, 1423 (2009)

    Article  CAS  Google Scholar 

  96. A.A. Manoharan, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, H. Algarni, S. AlFaify, Transition metal (Mn) and rare earth (Nd) di-doped novel ZnO nanoparticles: a facile sol–gel synthesis and characterization. J. Mater. Sci.: Mater. Electron. 29, 13077–13086 (2018)

    Google Scholar 

  97. K. Sakai, T. Kakeno, T. Ikari, S. Shirakata, T. Sakemi, K. Awai, T. Yamamoto, Defect centers and optical absorption edge of degenerated semiconductor ZnO thin films. J. Appl. Phys. 99, 043508–043514 (2006)

    Article  Google Scholar 

  98. Y. Sun, N.G. Ndifor-Angwafor, D.J. Riley, M.N.R. Ashfold, Synthesis and photoluminescence of ultra-thin ZnO nanowire/ nanotube arrays formed by hydrothermal growth. Chem. Phys. Lett. 431, 352–357 (2006)

    Article  CAS  Google Scholar 

  99. I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60, R123–R160 (1986)

    Article  CAS  Google Scholar 

  100. D. Zhao, S. Xu, M. Xie, S. Tong, H. Yang, Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677–679 (2003)

    Article  CAS  Google Scholar 

  101. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, D. Yoder-Short, Dependence of energy gap on x and T in Zn1-xMnxSe: The role of exchange interaction. Phys. Rev. B. 33, 8207–8215 (1986)

    Article  CAS  Google Scholar 

  102. P. Koidl, Optical absorption of Co2+ in ZnO. Phys. Rev. B. 15, 2493–2499 (1977)

    Article  CAS  Google Scholar 

  103. B. Halperin, M. Lax, Impurity-band tails in the high-density limit. I. Minimum counting methods. Phys. Rev 148(2), 722–740 (1966)

    CAS  Google Scholar 

  104. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20(4), 561–572 (2010)

    Article  CAS  Google Scholar 

  105. R. Kripal, A.K. Gupta, R.K. Srivastava, S.K. Mishra, Photoconductivity and photoluminescence of ZnO nanoparticles synthesized via co-precipitation method, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(5), 1605–1612 (2011)

    Article  CAS  Google Scholar 

  106. P. Li, S. Wang, J. Li, Y. Wei, Structural and optical properties of Co-doped ZnO nanocrystallites prepared by a one-step solution route. J. Lumin. 132, 220–225 (2012)

    Article  CAS  Google Scholar 

  107. A.A. Letailleur, S.Y. Grachev, E. Barthel, E. Søndergard, K. Nomenyo, C. Couteau, S.M. Murtry, G. Le´rondel, E. Charlet, E. Peter, High efficiency white luminescence of alumina doped ZnO. J. Lumin. 131, 2646–2651 (2011)

    Article  CAS  Google Scholar 

  108. S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, K. Ariga, Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J Mol Catal A Chem 266, 149–157 (2007)

    Article  CAS  Google Scholar 

  109. P.K. Sharma, A.C. Pandey, G. Zolnierkiewicz, N. Guskos, C. Rudowicz, Relationship between oxygen defects and the photoluminescence property of ZnO nanoparticles: a spectroscopic view. J. Appl. Phys. 106, 094314 (2009)

    Article  Google Scholar 

  110. J. Liu, X. Huang, Y. Li, Q. Zhong, L. Ren, Preparation and photoluminescence of ZnO complex structures with controlled morphology. Mater. Lett. 60, 1354–1359 (2006)

    Article  CAS  Google Scholar 

  111. S. Bayan, D. Mohanta, Defect mediated optical emission of randomly oriented ZnO nanorods and unusual rectifying behavior of schottky nanojunctions. J. Appl. Phys. 110, 054316 (2011)

    Article  Google Scholar 

  112. S. Mahamuni, K. Borgohain, B.S. Bendre, Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys. 85, 2861 (1999)

    Article  CAS  Google Scholar 

  113. K. Ravichandrana, R. Rathia, M. Baneto, K. Karthika, P.V. Rajkumar, B. Sakthivel, R. Damodaran, Effect of Fe+F doping on the antibacterial activity of ZnO powder. Ceram. Int. 41, 3390–3395 (2015)

    Article  Google Scholar 

  114. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)

    Article  CAS  Google Scholar 

  115. A. Azam, A.S. Ahmed, M.S. Ansari, A.H. Naqvi, Study of electrical properties of nickel doped SnO2 ceramic nanoparticles. J. Alloys Compd. 506, 237–242 (2010)

    Article  CAS  Google Scholar 

  116. K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann Phys. 345, 817–855 (1913)

    Article  Google Scholar 

  117. R. Zamiri, A. Kaushal, A. Rebelo, J.M.F. Ferreira, Er doped ZnO nanoplates: synthesis, optical and dielectric properties. Ceram. Int. 40, 1635–1639 (2014)

    Article  CAS  Google Scholar 

  118. K.V. Chandekar, M. Shkir, A. Khan, S. AlFaify, An in-depth study on physical properties of facilely synthesized Dy@CdS NPs through microwave route for optoelectronic technology. Mater. Sci. Semicond. Process. 118, 105184 (2020)

    Article  CAS  Google Scholar 

  119. S.M. Sze, K.K. Ng, Physics of semiconductor devices (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  120. D. Varshney, S. Dwivedi 2015 3d transition metal doped Zn0.95Tm0.05O (Tm = Mn, Co, Ni, Cu): structure, microstructure, Raman, dielectric constant and magnetism. Mater. Res. Express 2, e106102

  121. M. Ashokkumar, S. Muthukumaran, Effect of Ni doping on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015)

    Article  CAS  Google Scholar 

  122. X. Li, X. Cao, L. Xu, L. Liu, Y. Wang, C. Meng, Z. Wang, High dielectric constant in Al-doped ZnO ceramics using high-pressure treated powders. J. Alloys Compd. 657, 90–94 (2016)

    Article  CAS  Google Scholar 

  123. A.K. Jonscher’s, The universal’ dielectric response. Nature. 267, 673–679 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through Research Groups Program under Grant No. R.G.P.2/160/42.

Author information

Authors and Affiliations

Authors

Contributions

Kamlesh V. Chandekar, Mohd. Shkir, S.P. Yadav, and Pravata Kumar Behera contributed to conceptualization, data curation, formal analysis, and writing and preparation of the original draft; Mohd. Shkir and S. AlFaify contributed to funding acquisition, investigation, methodology, project administration, resources, software, supervision, validation, visualization, and writing, reviewing, and editing of the manuscript.

Corresponding authors

Correspondence to Kamlesh V. Chandekar or Mohd. Shkir.

Ethics declarations

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandekar, K.V., Shkir, M., Yadav, S.P. et al. Facile synthesis of Mn-doped ZnO nanoparticles by flash combustion route and their characterizations for optoelectronic applications. J Mater Sci: Mater Electron 33, 3849–3869 (2022). https://doi.org/10.1007/s10854-021-07576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07576-w

Navigation