Skip to main content
Log in

Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Nanoscale materials are of a foremost desirability in functionalized materials research in almost all areas of science. Nanoscale materials with good biocompatibility and chemical stability possess biomedical usages which comprises drug carrier, cell/DNA parting, wastewater cleaning etc. Hence, magnesium-doped ZnO (Mg@ZnO) nanoparticles (NPs) were prepared by combustion route. Crystallization of Mg@ZnO NPs was investigated using X-ray diffraction and transmission electron microscopy. The particle sizes were in the range of 50–130 nm and 17.5–52.5 nm for x = 1 wt% and 4 wt% in MgxZn1-xO samples, respectively. The Zn2+ substitution by Mg2+ in ZnO increased oxygen vacancies and reduced free electrons concentration. The concentrations of dopant dependent optical band gaps were calculated using diffuse reflectance and found in the range of 3.258–3.278 eV. Antibacterial study of Mg@ZnO NPs was conducted against the Gram- + ve and Gram – ve bacteria and results revealed enrichment in antibacterial activity of Mg@ZnO NPs against all types of bacteria. In vivo test revealed that all Mg@ZnO NPs have no cytotoxic effects on liver and kidneys. Furthermore, photocatalytic activity was performed towards hazardous methylene green dye degradation under UV light irradiation. The presence of Mg in ZnO lattice remarkably improved its photocatalytic performance and the photocatalytic activity of Mg@ZnO ranged from 1.8 to 5.4 times higher than the activity of neat ZnO under the same reaction conditions.

Graphic abstract

Facile synthesis of Mg@ZnO NPs was achieved successfully through flash combustion process and the prepared NPs were exploited for optical, biological and environmental applications. Enhancement of antibacterial, cytotoxicity and photocatalysis activity was observed in ZnO with Mg content doping. The outcomes present the Mg@ZnO NPs as an efficient material for opto-bio-environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rai, M., Yadav, A., Gade, A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009)

    CAS  PubMed  Google Scholar 

  2. Sawai, J.: Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbiol. Methods. 54(2), 177–182 (2003)

    CAS  PubMed  Google Scholar 

  3. Husen, A.: Gold nanoparticles from plant system: synthesis, characterization and their application. In: Ghorbanpour, M., Manika, K., Varma, A. (eds.) Nanoscience and plant-soil systems, pp. 455–479. Springer International Publishing, Cham (2017)

    Google Scholar 

  4. Siddiqi, K.S., ur Rahman, A., Tajuddin, Husen, A.: Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 13(1), 141 (2018)

    PubMed  PubMed Central  Google Scholar 

  5. Zhai, Y.J., Li, J.H., Chu, X.Y., Xu, M.Z., Li, X., Fang, X., et al.: photocatalytic performance in oxide nanomaterials. Integr. Ferroelectr. 167(1), 1–16 (2015)

    CAS  Google Scholar 

  6. Nam, W.H., Lim, Y.S., Choi, S.-M., Seo, W.-S., Lee, J.Y.: High-temperature charge transport and thermoelectric properties of a degenerately Al-doped ZnO nanocomposite. J. Mater. Chem. 22(29), 14633–14638 (2012)

    CAS  Google Scholar 

  7. Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., et al.: Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances. 5(7), 4993–5003 (2015)

    CAS  Google Scholar 

  8. Begum, N.J., Mohan, R., Ravichandran, K.: Effect of solvent volume on the physical properties of aluminium doped nanocrystalline zinc oxide thin films deposited using a simplified spray pyrolysis technique. Superlattices Microstruct. 53, 89–98 (2013)

    Google Scholar 

  9. Rago, I., Chandraiahgari, C.R., Bracciale, M.P., De Bellis, G., Zanni, E., Cestelli Guidi, M., et al.: Zinc oxide microrods and nanorods: different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Advances. 4(99), 56031–560340 (2014)

    CAS  Google Scholar 

  10. Fangli, Y., Peng, H., Chunlei, Y., Shulan, H., Jinlin, L.: Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J. Mater. Chem. 13(3), 634–637 (2013)

    Google Scholar 

  11. Lu, H., Wang, S., Zhao, L., Li, J., Dong, B., Xu, Z.: Hierarchical ZnO microarchitectures assembled by ultrathin nanosheets: hydrothermal synthesis and enhanced photocatalytic activity. J. Mater. Chem. 21(12), 4228–4234 (2011)

    CAS  Google Scholar 

  12. Ahmad, M., Yingying, S., Nisar, A., Sun, H., Shen, W., Wei, M., et al.: Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21(21), 7723–7729 (2011)

    CAS  Google Scholar 

  13. Han, C., Yang, M.-Q., Weng, B., Xu, Y.-J.: Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 16(32), 16891–16903 (2014)

    CAS  PubMed  Google Scholar 

  14. Mitra, S., Subia, B., Patra, P., Chandra, S., Debnath, N., Das, S., et al.: Porous ZnO nanorod for targeted delivery of doxorubicin: in vitro and in vivo response for therapeutic applications. J. Mater. Chem. 22(45), 24145–24154 (2012)

    CAS  Google Scholar 

  15. Wu, Y.L., Tok, A.I.Y., Boey, F.Y.C., Zeng, X.T., Zhang, X.H.: Surface modification of ZnO nanocrystals. Appl. Surf. Sci. 53(12), 5473–5479 (2007)

    Google Scholar 

  16. Taccola, L., Raffa, V., Riggio, C., Vittorio, O., Iorio, M.C., Vanacore, R., et al.: Zinc oxide nanoparticles as selective killers of proliferating cells. Int. J. Nanomedicine. 6, 1129–1140 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Raghupathi, K.R., Koodali, R.T., Manna, A.C.: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028 (2011)

    CAS  PubMed  Google Scholar 

  18. Jones, N., Ray, B., Ranjit, K.T., Manna, A.C.: Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 279(1), 71–76 (2008)

    CAS  PubMed  Google Scholar 

  19. Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., et al.: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., et al.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro. Lett. 27(3), 219–242 (2015)

    Google Scholar 

  21. Hameed, A.S.H., Karthikeyan, C., Ahamed, A.P., Thajuddin, N., Alharbi, N.S., Alharbi, S.A., et al.: In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 6(1), 24312 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., Arumugam, A.: Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruct. Chem. 5(3), 295–303 (2015)

    CAS  Google Scholar 

  23. Jung, M., Kim, S., Ju, S.: Enhancement of green emission from Sn-doped ZnO nanowires. Opt. Mater. 33(3), 280–283 (2011)

    CAS  Google Scholar 

  24. Sahu, R.K., Ganguly, K., Mishra, T., Mishra, M., Ningthoujam, R.S., Roy, S.K., et al.: Stabilization of intrinsic defects at high temperatures in ZnO nanoparticles by Ag modification. J. Colloid Interface Sci. 366(1), 8–15 (2012)

    CAS  PubMed  Google Scholar 

  25. Clament Sagaya Selvam, N., Judith Vijaya, J., John Kennedy, L.: Comparative studies on influence of morphology and La doping on structural, optical, and photocatalytic properties of zinc oxide nanostructures. J. Colloid Interface Sci. 407, 215–224 (2013)

    CAS  PubMed  Google Scholar 

  26. Jan, T., Iqbal, J., Ismail, M., Zakaullah, M., Naqvi, S.H., Badshah, N.: Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomed. 8, 3679–3687 (2013)

    Google Scholar 

  27. Nair, M.G., Nirmala, M., Rekha, K., Anukaliani, A.: Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater. Lett. 65(12), 1797–1800 (2011)

    CAS  Google Scholar 

  28. Talari, M.K., Majeed, A.B.A., Tripathi, D.K., Tripathy, M.: Synthesis, characterization and antimicrobial investigation of mechanochemically processed silver doped ZnO nanoparticles. Chemi. Pharmaceutical Bull. 60(7), 818–824 (2012)

    CAS  Google Scholar 

  29. Haja Hameed, A.S., Karthikeyan, C., Sasikumar, S., Senthil Kumar, V., Kumaresan, S., Ravi, G.: Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J. Mater. Chem. B. 1(43), 5950–5962 (2013)

    CAS  PubMed  Google Scholar 

  30. Iqbal, J., Jan, T., Ismail, M., Ahmad, N., Arif, A., Khan, M., et al.: Influence of Mg doping level on morphology, optical, electrical properties and antibacterial activity of ZnO nanostructures. Ceram. Int. 40(5), 7487–7493 (2014)

    CAS  Google Scholar 

  31. Pradeev raj, K., Sadaiyandi, K., Kennedy, A., Sagadevan, S., Chowdhury, Z.Z., Johan, M.R.B., et al.: Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13(1), 229 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hisatomi, T., Kubota, J., Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014)

    CAS  PubMed  Google Scholar 

  33. Chen, X., Shen, S., Guo, L., Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110(11), 6503–6570 (2010)

    CAS  PubMed  Google Scholar 

  34. Chong, M.N., Jin, B., Chow, C.W., Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    CAS  PubMed  Google Scholar 

  35. Robinson, T., McMullan, G., Marchant, R., Nigam, P.: Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77(3), 247–255 (2001)

    CAS  PubMed  Google Scholar 

  36. Noureen, L., Xie, Z., Gao, Y., Li, M., Hussain, M., Wang, K., et al.: Multifunctional Ag3PO4-rGO coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection. ACS Appl. Mater. Inter. 12(5), 6343–6350 (2020)

    CAS  Google Scholar 

  37. Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A.M., Karuppuchamy, S.: Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 828, 154281 (2020)

    CAS  Google Scholar 

  38. Khuzwayo, Z.Z., Chirwa, E.M.: Photocatalysis as a clean technology for the degradation of petrochemical pollutants. Emerging eco-friendly green technologies for wastewater treatment, pp. 171–191. Springer, Berlin (2020)

    Google Scholar 

  39. Shkir, M., Al-Shehri, B.M., Pachamuthu, M., Khan, A., Chandekar, K.V., AlFaify, S., et al.: A remarkable improvement in photocatalytic activity of ZnO nanoparticles through Sr doping synthesized by one pot flash combustion technique for water treatments. Colloids Surf. A 587, 124340 (2020)

    CAS  Google Scholar 

  40. Lee, S.-K., Mills, A.: Detoxification of water by semiconductor photocatalysis. J. Ind. Eng. Chem. 10(2), 173–187 (2004)

    CAS  Google Scholar 

  41. Jia, J., Sun, W., Zhang, Q., Zhang, X., Hu, X., Liu, E., et al.: Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation. Appl. Catal. 261, 118249 (2020)

    CAS  Google Scholar 

  42. Zhang, L., Yang, J., Zhao, X., Xiao, X., Sun, F., Zuo, X., et al.: Small-molecule surface-modified bismuth-based semiconductors as a new class of visible-light-driven photocatalytic materials: Structure-dependent photocatalytic properties and photosensitization mechanism. Chem. Eng. J. 380, 122546 (2020)

    CAS  Google Scholar 

  43. Mills, A., Lee, S.-K.: A web-based overview of semiconductor photochemistry-based current commercial applications. J. Photochem. Photobiol. A. 152(1–3), 233–247 (2002)

    CAS  Google Scholar 

  44. Schmelling, D.C., Gray, K.A.: Photocatalytic transformation and mineralization of 2, 4, 6-trinitrotoluene (TNT) in TiO2 slurries. Water Res. 29(12), 2651–2662 (1995)

    CAS  Google Scholar 

  45. Chakrabarti, S., Dutta, B.K.: Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112(3), 269–278 (2004)

    CAS  PubMed  Google Scholar 

  46. Fotou, G.P., Pratsinis, S.E.: Photocatalytic destruction of phenol and salicylic acid with aerosol-made and commercial titania powders. Chem. Eng. Comm. 151(1), 251–269 (1996)

    CAS  Google Scholar 

  47. Senthilraja, A., Krishnakumar, B., Hariharan, R., Sobral, A.J., Surya, C., John, N.A.A., et al.: Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity. Sep. Purif. 202, 373–384 (2018)

    CAS  Google Scholar 

  48. Chen, S., Huang, D., Xu, P., Xue, W., Lei, L., Cheng, M., et al.: Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion? J. Mater. Chem. A. 8(5), 2286–2322 (2020)

    CAS  Google Scholar 

  49. Gouvea, C.A., Wypych, F., Moraes, S.G., Duran, N., Nagata, N., Peralta-Zamora, P.: Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40(4), 433–440 (2000)

    CAS  PubMed  Google Scholar 

  50. Hong, R., Li, J., Chen, L., Liu, D., Li, H., Zheng, Y., et al.: Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 189(3), 426–432 (2009)

    CAS  Google Scholar 

  51. Uskoković, V., Drofenik, M.: Synthesis of materials within reverse micelles. Surf. Rev. Lett. 12(02), 239–277 (2005)

    Google Scholar 

  52. Krishnakumar, B., Balakrishna, A., Nawabjan, S.A., Pandiyan, V., Aguiar, A., Sobral, A.J.F.N.: Solar and visible active amino porphyrin/SiO2ZnO for the degradation of naphthol blue black. J. Phys. Chemi. Solids. 111, 364–371 (2017)

    CAS  Google Scholar 

  53. Kumar, A., Subash, B., Krishnakumar, B., Sobral, A.J.F.N., Sankaran, K.R.: Synthesis, characterization and excellent catalytic activity of modified ZnO photocatalyst for RR 120 dye degradation under UV-A and solar light illumination. J. Water Process. Eng. 13, 6–15 (2016)

    Google Scholar 

  54. Krishnakumar, B., Imae, T., Miras, J., Esquena, J.: Synthesis and azo dye photodegradation activity of ZrS2–ZnO nano-composites. Sep. Purif. Technol. 132, 281–288 (2014)

    CAS  Google Scholar 

  55. Xie, W., Li, Y., Sun, W., Huang, J., Xie, H., Zhao, X.: Surface modification of ZnO with Ag improves its photocatalytic efficiency and photostability. J. Photoch. Photobio. A. 216(2–3), 149–155 (2010)

    CAS  Google Scholar 

  56. Ramgir, N.S., Sharma, P.K., Datta, N., Kaur, M., Debnath, A., Aswal, D., et al.: Room temperature H2S sensor based on Au modified ZnO nanowires. Sensor Actuat B-Chem. 186, 718–726 (2013)

    CAS  Google Scholar 

  57. Punnoose, A., Dodge, K., Rasmussen, J.W., Chess, J., Wingett, D., Anders, C.: Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: a green chemistry approach for safer nanomaterials. ACS Sustain. Chem. Eng. 2(7), 1666–1673 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shahmoradi, B., Soga, K., Ananda, S., Somashekar, R., Byrappa, K.: Modification of neodymium-doped ZnO hybrid nanoparticles under mild hydrothermal conditions. Nanoscale. 2(7), 1160–1164 (2010)

    CAS  PubMed  Google Scholar 

  59. Xiao, Q., Ouyang, L.: Photocatalytic photodegradation of xanthate over Zn1−xMnxO under visible light irradiation. J. Alloys Compd. 479(1–2), L4–L7 (2009)

    CAS  Google Scholar 

  60. Milenova, K., Stambolova, I., Blaskov, V., Eliyas, A., Vassilev, S., Shipochka, M.: The effect of introducing copper dopant on the photocatalytic activity of ZnO nanoparticles. J. Chem. Technol. 48(3), 259–264 (2013)

    CAS  Google Scholar 

  61. Yıldırım, Ö.A., Unalan, H.E., Durucan, C.: Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO: Ag) nanoparticles: structural, optical, and photocatalytic properties. J. Am. Ceram. Soc. 96(3), 766–773 (2013)

    Google Scholar 

  62. Rekha, K., Nirmala, M., Nair, M.G., Anukaliani, A.: Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys. B 405(15), 3180–3185 (2010)

    CAS  Google Scholar 

  63. Slama, R., El Ghoul, J., Omri, K., Houas, A., El Mir, L., Launay, F.: Effect of Ca-doping on microstructure and photocatalytic activity of ZnO nanoparticles synthesized by sol gel method. J. Mater. Sci. Mater. Electron. 27(8), 7939–7946 (2016)

    CAS  Google Scholar 

  64. Hameed, A.S.H., Karthikeyan, C., Sasikumar, S., Kumar, V.S., Kumaresan, S., Ravi, G.: Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. J. Mater. Chem. B. 1(43), 5950–5962 (2013)

    Google Scholar 

  65. Chen, S., Yang, Y., Ji, M., Liu, W.: Preparation, characterisation and activity evaluation of CaCO3/ZnO photocatalyst. J. Exp. Nanosci. 6(3), 324–336 (2011)

    CAS  Google Scholar 

  66. Ba-Abbad, M.M., Kadhum, A.A.H., Mohamad, A.B., Takriff, M.S., Sopian, K.: Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 91(11), 1604–1611 (2013)

    CAS  PubMed  Google Scholar 

  67. Yu, K-s, Shi, J-y, Zhang, Z-l, Liang, Y-m, Synthesis, L.W.: characterization, and photocatalysis of ZnO and Er-Doped ZnO. J. Nanomater. 2013, 75 (2013)

    Google Scholar 

  68. Marin, R., Oussta, F., Katea, S.N., Prabhudev, S., Botton, G.A., Westin, G., et al.: Europium-doped ZnO nanosponges–controlling optical properties and photocatalytic activity. J. Mater. Chem. C. 7(13), 3909–3919 (2019)

    CAS  Google Scholar 

  69. Anandan, S., Vinu, A., Lovely, K.S., Gokulakrishnan, N., Srinivasu, P., Mori, T., et al.: Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A-Chem. 266(1–2), 149–157 (2007)

    CAS  Google Scholar 

  70. Pascariu, P., Homocianu, M., Cojocaru, C., Samoila, P., Airinei, A., Suchea, M.: Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: effect of La3+ doping on optical and photocatalytic properties. Appl. Surf. Sci. 476, 16–27 (2019)

    CAS  Google Scholar 

  71. Senthilraja, A., Subash, B., Krishnakumar, B., Swaminathan, M., Shanthi, M.: Novel Sr–Au–ZnO: synthesis, characterization and photocatalytic activity. Superlattices Microstruct. 75, 701–715 (2019)

    Google Scholar 

  72. Khanizadeh, B., Khosravi, M., Behnajady, M.A., Shamel, A., Vahid, B.: Mg and La Co-doped ZnO nanoparticles prepared by sol–gel method: synthesis, characterization and photocatalytic activity. Period. Polytech. Chem. Eng. 64(1), 61–74 (2020)

    CAS  Google Scholar 

  73. Subbiah, R., Muthukumaran, S., Raja, V.: Biosynthesis, structural, photoluminescence and photocatalytic performance of Mn/Mg dual doped ZnO nanostructures using Ocimum tenuiflorum leaf extract. Optik. 208, 164556 (2020)

    CAS  Google Scholar 

  74. Gupta, J., Bahadur, D.: Defect-mediated reactive oxygen species generation in Mg-substituted ZnO nanoparticles: efficient nanomaterials for bacterial inhibition and cancer therapy. ACS Omega. 3(3), 2956–2965 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Labhane, P., Sonawane, S., Sonawane, G., Patil, S., Huse, V.: Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight. J. Phys. Chemi. Solids. 114, 71–82 (2018)

    CAS  Google Scholar 

  76. Selvam, N.C.S., Narayanan, S., Kennedy, L.J., Vijaya, J.J.: Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol. J. Environ. Sci. 25(10), 2157–2167 (2015)

    Google Scholar 

  77. Sitthichai, S., Phuruangrat, A., Thongtem, T., Thongtem, S.: Influence of Mg dopant on photocatalytic properties of Mg-doped ZnO nanoparticles prepared by sol–gel method. J. Ceram. Soc. Jpn. 125(3), 122–124 (2017)

    CAS  Google Scholar 

  78. Kasi, G., Seo, J.: Influence of Mg doping on the structural, morphological, optical, thermal, and visible-light responsive antibacterial properties of ZnO nanoparticles synthesized via co-precipitation. Mater. Sci. Eng. C. 98, 717–725 (2019)

    CAS  Google Scholar 

  79. Etacheri, V., Roshan, R., Kumar, V.: Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Inter. 4(5), 2717–2725 (2012)

    CAS  Google Scholar 

  80. Zhang, X., Zhou, R., Liu, P., Fu, L., Lan, X., Gong, G.: Improvement of the antibacterial activity of nanocrystalline zinc oxide by doping Mg (II) or Sb (III). Int. J. Appl. Ceram. Technol. 8(5), 1087–1098 (2011)

    CAS  Google Scholar 

  81. Adam, R.E., Alnoor, H., Pozina, G., Liu, X., Willander, M., Nur, O.: Synthesis of Mg-doped ZnO NPs via a chemical low-temperature method and investigation of the efficient photocatalytic activity for the degradation of dyes under solar light. Solid State Sci. 99, 106053 (2020)

    CAS  Google Scholar 

  82. Li, X., Fang, X., Chen, X., Wang, X., Li, J., Fang, F., Wei, F., Chu, X., Wang, F.: Enhanced photocatalytic activity of Mg-doped ZnO nanorods prepared by electrodeposition. Integr. Ferroelectr. 144(1), 22–28 (2013)

    CAS  Google Scholar 

  83. Sa-nguanprang, S., Phuruangrat, A., Thongtem, T., Thongtem, S.: Synthesis, analysis, and photocatalysis of Mg-doped ZnO nanoparticles. Russ. J. Inorg. Chem. 64(14), 1841–2184 (2019)

    CAS  Google Scholar 

  84. Zheng, D., Wang, G., Huang, W., Wang, B., et al.: Combustion synthesized zinc oxide electron-transport layers for efficient and stable Perovskite solar cells. Adv. Funct. Mater. 29(16), 1900265 (2019)

    Google Scholar 

  85. Graeve, O.A., Varma, S., Rojas-George, G., Brown, D.R., Lopez, E.A.: Synthesis and characterization of luminescent yttrium oxide doped with Tm and Yb. J. Am. Ceram. Soc. 89(3), 926–931 (2006)

    CAS  Google Scholar 

  86. Silva, J.M., Araújo, J.F.D.F., BrocchiI, E., Solórzano, G.: Micro analytical and magnetic characterization of aluminum-iron spinel (FeAl2O4) synthesized by combustion reaction. Ceram. Int. 46(11), 19052–19061 (2020)

    CAS  Google Scholar 

  87. Mangalaraja, R.V., Mouzon, J., Hedström, P., Kero, I., Ramam, K.V.S., Camurri, C.P., et al.: Combustion synthesis of Y2O3 and Yb–Y2O3: Part I. Nanopowders and their characterization. J. Mater. Process. Technol. 208(1), 415–422 (2008)

    CAS  Google Scholar 

  88. Shkir, M., Hamdy, M.S., AlFaify, S.: A facile one pot flash combustion synthesis of ZnO nanoparticles and their characterizations for photocatalytic applications. J. Mol. Struct. 1197, 610–616 (2019)

    CAS  Google Scholar 

  89. Ibrahim, E.H., Kilany, M., Ghramh, H.A., Khan, K.A., ul Islam, S.: Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nanoparticles (AgNPs) using Juniperus procera. Saudi J. Biol. Sci. 26(7), 1689–1694 (2019)

    CAS  PubMed  Google Scholar 

  90. Algarni, H., Alshahrani, I., Ibrahim, E.H., Eid, R.A., Kilany, M., Ghramh, H.A., et al.: Fabrication and biocompatible characterizations of bio-glasses containing oxyhalides ions. J. Nanoelectron. Optoe. 14(3), 328–334 (2019)

    CAS  Google Scholar 

  91. Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E.: Hak-Sung Kim Aspartate aminotransferase (AST/GOT) and Alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6, 756–782 (2006)

    CAS  Google Scholar 

  92. Medić, B., Stojanović, M., Rovčanin, B., Kekić, D., Škodrić, S.R., Jovanović, G.B., et al.: Pioglitazone attenuates kidney injury in an experimental model of gentamicin-induced nephrotoxicity in rats. Sci. Rep. 9(1), 1–10 (2019)

    Google Scholar 

  93. Hamdy, M.S.: One-step synthesis of M-doped TiO2 nanoparticles in TUD-1 (M-TiO2-TUD-1, M=Cr or V) and their photocatalytic performance under visible light irradiation. J. Mol. Catal. A-Chem. 393, 39–46 (2014)

    CAS  Google Scholar 

  94. Hamdy, M.S., Scott, E.L., Carr, R.H., Sanders, J.P.M.: A novel photocatalytic conversion of tryptophan to kynurenine using black light as a light source. Catal. Lett. 142(3), 338–344 (2012)

    CAS  Google Scholar 

  95. Hamdy, M.S., Nickels, P., Abd-Elmaksood, I.H., Zhou, H., El-Mossalamy, E.H., Alyoubi, A.O., et al.: Parameters controlling the photocatalytic performance of ZnO/Hombikat TiO2 composites. J. Photochem. Photobiol. A. 228(1), 1–7 (2012)

    CAS  Google Scholar 

  96. Chandekar, K.V., Shkir, M., Al-Shehri, B.M., AlFaify, S., Halor, R.G., Khan, A., et al.: Visible light sensitive Cu doped ZnO: facile synthesis, characterization and high photocatalytic response. Mater. Charact. 165, 110387 (2020)

    CAS  Google Scholar 

  97. Hameed, A.S.H., Karthikeyan, C., Venugopal, S.K., Subramanian, K., Seemaisamy, S.: Mater. Sci. Eng. C. 52, 171–177 (2015)

    Google Scholar 

  98. Shkir, M., Chandekar, K.V., Khan, A., El-Toni, A.M., AlFaify, S.: A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicon. Proc. 107, 104807 (2020)

    CAS  Google Scholar 

  99. Mohd, S., Khan, Z.R., Hamdy, M.S., Algarni, H., AlFaify, S.: A facile microwave-assisted synthesis of PbMoO4 nanoparticles and their key characteristics analysis: a good contender for photocatalytic applications. Mater. Res. Express. 5(9), 095032 (2018)

    Google Scholar 

  100. Shkir, M., AlFaify, S.: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7(1), 16091 (2017)

    PubMed  PubMed Central  Google Scholar 

  101. Singh, R.G., Singh, F., Kumar, V., Mehra, R.M.: Growth kinetics of ZnO nanocrystallites: structural, optical and photoluminescence properties tuned by thermal annealing. Curr. Appl. Phys. 11(3), 624–630 (2011)

    Google Scholar 

  102. Decremps, F., Pellicer-Porres, J., Saitta, A.M., Chervin, J.C., Polian, A.: High-pressure Raman spectroscopy study of wurtzite ZnO. Phys. Rev. B. 65, 092101 (2002)

    Google Scholar 

  103. Lupan, O., Chow, L., Ono, L.K., Cuenya, B.R., Chai, G., Khallaf, H., et al.: Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. J. Phys. Chem C. 114(29), 12401–12408 (2010)

    CAS  Google Scholar 

  104. Jothilakshmi, R., Ramakrishnan, V., Thangavel, R., Kumar, J., Saruac, A., Kuball, M.: Micro-Raman scattering spectroscopy study of Li-doped and undoped ZnO needle crystals. J. Raman Spectrosc. 40, 556–561 (2009)

    CAS  Google Scholar 

  105. Cuscó, R., Alarcón-Lladó, E., Ibanez, J., Artús, L., Jiménez, J., Wang, B., et al.: Temperature dependence of Raman scattering in ZnO. Phys. Rev. B. 75(16), 165202 (2007)

    Google Scholar 

  106. Khusnutdinov, S., Dynowska, E., Zaleszczyk, W., Makhniy, V., Wysmołek, A., Korona, K.: Anharmonic optical phonon effects in ZnO nanocrystals. Acta Phys Pol A. 119(5), 678–680 (2007)

    Google Scholar 

  107. Zhao, A., Luo, T., Chen, L., Liu, Y., Li, X., Tang, Q., et al.: Synthesis of ordered ZnO nanorods film on zinc-coated Si substrate and their photoluminescence property. Mater. Chemi. Phys. 99(1), 50–53 (2006)

    CAS  Google Scholar 

  108. Zhang, Y., Li, Y., Ni, D., Chen, Z., Wang, X., Bu, Y., Jin-Ping, A.: Improvement of BiVO4 photoanode performance during water photo-oxidation using Rh-doped SrTiO3 perovskite as a Co-Catalyst. Adv. Funct. Mater. 1902101, 1–10 (2019)

    Google Scholar 

  109. Li, Y., Yuyu, Bu, Jiang, F., Dai, X., Ao, J.-P.: Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: based on semiconductor/DNA interfacial multifunctional reconciliation via 2D–C3N4. Biosens. Bioelectron. 150, 111903 (2019)

    PubMed  Google Scholar 

  110. Chandekar, K.V., Shkir, M., AlFaify, S.: Tuning the optical band gap and magnetization of oleic acid coated CoFe2O4 NPs synthesized by facile hydrothermal route. Mat Sci Eng B. 259, 114603 (2020)

    CAS  Google Scholar 

  111. Shkir, M.: Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31(8), 1046–1055 (2016)

    CAS  Google Scholar 

  112. Chandekar, K.V., Shkir, M., Khan, A., Al-Shehri, B.M., Hamdy, M.S., AlFaify, S., et al.: A facile one-pot flash combustion synthesis of La@ZnO nanoparticles and their characterizations for optoelectronic and photocatalysis applications. J. Photochem. Photobiol. A. 395, 112465 (2020)

    CAS  Google Scholar 

  113. Shkir, M., Chandekar, K.V., Alshehri, B.M., Khan, A., AlFaify, S., Hamdy, M.S.: A remarkable enhancement in photocatalytic activity of facilely synthesized Terbium@Zinc oxide nanoparticles by flash combustion route for optoelectronic applications. Appl. Nanosci. 10, 1811–1823 (2019)

    Google Scholar 

  114. Sze, S.M., Ng, K.K.: Physics of semiconductor devices. Wiley, Hoboken (2006)

    Google Scholar 

  115. Ferhat, M., Zaoui, A., Ahuja, R.: Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94(14), 142502 (2009)

    Google Scholar 

  116. Kim, K.J., Park, Y.R.: Optical investigation of Zn1−xFexO films grown on Al2O3(0001) by radio-frequency sputtering. J. Appl. Phys. 96(8), 4150–4153 (2004)

    CAS  Google Scholar 

  117. Kim, C.E., Moon, P., Kim, S., Myoung, J.M., Jang, H.W., Bang, J., Yun, I.: Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films. Thin Solid Films 518, 6304–6307 (2010)

    CAS  Google Scholar 

  118. Yogamalar, N.R., Bose, A.C.: Burstein-Moss shift and room temperature near-band-edge luminescence in lithium-doped zinc oxide. Appl. Phys. A. 103, 33–42 (2011)

    CAS  Google Scholar 

  119. Zhu, Q., Xie, C., Li, H., Yang, C., Zhang, S., Zeng, S.: Selectively enhanced UV and NIR photoluminescence from a degenerate ZnO nanorod array film. J. Mater. Chem. C. 2, 4566–4580 (2014)

    CAS  Google Scholar 

  120. Li, Z., Shen, W., Xue, S., Zu, X.: Effect of annealing temperature on the structural and optical properties of Zn1−xMgxO particles prepared by oxalate precursor. Colloids Surf. A 320(1), 156–160 (2008)

    CAS  Google Scholar 

  121. Suwanboon, S., Amornpitoksuk, P.: Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties. Procedia Eng. 32, 821–826 (2012)

    CAS  Google Scholar 

  122. Sajjad, M.U., Inam, U., Khan, M.I., Khan, J., Khan, M.Y., Qureshi, M.T.: Structural and optical properties of pure and copper doped zinc oxide nanoparticles. Results Phys. 9, 1301–1309 (2018)

    Google Scholar 

  123. Ferhat, M., Zaoui, A., Ahuja, R.: Magnetism and band gap narrowing in Cu-doped ZnO. Appl. Phys. Lett. 94, 142502 (2009)

    Google Scholar 

  124. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., et al.: Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 42(18), 4591–4602 (2008)

    CAS  PubMed  Google Scholar 

  125. Vijaya Kumar, P., Karthikeyan, M., Jafar, A.A.: Synthesis, structural and antibacterial properties of Mg doped ZnO. J. Environ. Nanotechnol. 5, 11–16 (2016)

    Google Scholar 

  126. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. (2012). https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  127. Yousef, J.M., Danial, E.N.: In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci. 2(4), 8–42 (2012)

    Google Scholar 

  128. Karthika, K., Ravichandran, K.: Enhancing the magnetic and antibacterial properties of ZnO nanopowders through Mn+Co doping. Ceram. Int. 41(6), 7944–7951 (2015)

    CAS  Google Scholar 

  129. Yamamoto, O.: Influence of particle size on the antibacterial activity of zinc oxide. Int. J. Inorg. Mater. 3(7), 643–646 (2001)

    CAS  Google Scholar 

  130. Talebian, N., Amininezhad, S.M., Doudi, M.: Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B. 120, 66–73 (2013)

    CAS  PubMed  Google Scholar 

  131. Sadaiyandi, K., Kennedy, A., Sagadevan, S., Chowdhury, Z.Z., Johan, M.R.B., Aziz, F.A., et al.: Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13(1), 229 (2018)

    PubMed  PubMed Central  Google Scholar 

  132. Hamdy, M.S., Yahia, I., Knoff, W., Story, T.: Oxygen-defected ZnO: facial synthesis and high photocatalytic performance under visible light. Optik. 158, 1123–1130 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P 2/87/41.

Author information

Authors and Affiliations

Authors

Contributions

MSH performed and written the photocatalysis section, KVC written the article, MS designed this whole research and make the measurements and discussion, SA perform measurement and scientific editing, EHI, ZA, MK performed biological studies, BMA, KSA performed photocatalytic studies and help in writing. All authors reviewed the manuscript carefully.

Corresponding authors

Correspondence to Mohd. Shkir or S. AlFaify.

Ethics declarations

Conflict of interest

The authors declare no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdy, M.S., Chandekar, K.V., Shkir, M. et al. Novel Mg@ZnO nanoparticles synthesized by facile one-step combustion route for anti-microbial, cytotoxicity and photocatalysis applications. J Nanostruct Chem 11, 147–163 (2021). https://doi.org/10.1007/s40097-020-00355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00355-9

Keywords

Navigation