Skip to main content
Log in

Electromagnetic interference shielding effectiveness of in situ-synthesized ultrafine SiC- and Al2O3-reinforced AA6061 aluminum matrix composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study produced silicon carbide (SiC) and aluminum oxide (Al2O3) particulates using an in situ reaction system of silicon dioxide (SiO2)+ carbon (C)+ aluminum (A)l with a molten aluminum alloy. The reaction system was examined through differential scanning calorimetry (DSC). The in situ-fabricated aluminum matrix composites (AMCs) were analyzed through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), electron backscatter diffraction (EBSD), and transmission electron microscope (TEM). The electromagnetic (EM) shielding effectiveness of the fabricated AMCs was measured in the frequency of 1–5 GHz. The heat flow curve obtained from the DSC analysis revealed the temperature required to attain the reaction. The XRD pattern confirmed the formation of SiC and Al2O3 particulates. FESEM micrographs confirmed that the SiC and Al2O3 particulates were distributed along the intergranular region in the AMCs. The in situ-synthesized submicron-level particulates enhanced the mechanical properties of the composites. The hybrid AMCs exhibited considerable EM shielding effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

There is not any data available for this paper.

References

  1. J.P. Immarigeon, R.T. Holt, A.K. Koul, L. Zhao, W. Wallace, J.C. Beddoes, Mater. Charact. 35, 1 (1995)

    Article  Google Scholar 

  2. E. Ghasali, A. Pakseresht, A. Rahbari, H. Eslami-Shahed, M. Alizadeh, T. Ebadzadeh, J. Alloys Compd. 666, 366–371 (2016)

    Article  CAS  Google Scholar 

  3. M.O. Bodunrin, K.K. Alaneme, L.H. Chown, J. Mater. Res. Technol. 4, 4 (2015)

    Article  Google Scholar 

  4. T. Shalu, E. Abhilash, M.A. Joseph, J. Mater. Process. Technol. 209, 10 (2009)

    Article  Google Scholar 

  5. E.M. Sharifi, F. Karimzadeh, M.H. Enayati, Mater. Des. 32, 6 (2011)

    Google Scholar 

  6. J.D.R. Selvam, D.R. Smart, I. Dinaharan, Kovove Mater 54, 03 (2016)

    Google Scholar 

  7. J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang, B. Xu, G. Wu, Chem. Eng. Sci. 429, 132253 (2022)

    Article  CAS  Google Scholar 

  8. Z. Luo, Q. Zhang, X. Ma, G. Wu, Micron. 64, 9 (2014)

    Article  Google Scholar 

  9. P.S. Bains, S.S. Sidhu, H.S. Payal, Mater. Manuf. Process. 31, 1 (2016)

    Article  Google Scholar 

  10. S.L. Pramod, S.R. Bakshi, B.S. Murty, J. Mater. Eng. 24, 6 (2015)

    Google Scholar 

  11. X. Kai, K. Tian, C. Wang, L. Jiao, G. Chen, Y. Zhao, J. Alloys Compd. 668, 121–127 (2016)

    Article  CAS  Google Scholar 

  12. A. Pugazhenthi, I. Dinaharan, G. Kanagaraj, J.D.R. Selvam, J. Braz. Soc. Mech. Sci. Eng. 40, 12 (2018)

    Article  Google Scholar 

  13. Z.G. Li, Mater. Lett. 121, 1–4 (2014)

    Article  CAS  Google Scholar 

  14. X. Du, T. Gao, G. Liu, X. Liu, J. Alloys Compd. 695, 1–8 (2017)

    Article  CAS  Google Scholar 

  15. Z. Dou, G. Wu, X. Huang, D. Sun, L. Jiang, Compos. Part A Appl. Sci. Manuf. 38, 1 (2007)

    Article  Google Scholar 

  16. R. Pandey, S. Tekumalla, M. Gupta, J. Mater. Sci. Mater. Electron. 29, 150–157 (2018)

    Article  Google Scholar 

  17. D.D.L. Chung, Mater. Chem. Phys. 255, 7 (2020)

    Article  Google Scholar 

  18. N. Dong, L. Chen, X. Yin, X. Ma, X. Sun, L. Cheng, L. Zhang, Ceram. Int. 42, 8 (2016)

    Google Scholar 

  19. F. Khodabakhshi, A. Simchi, Mater. Des. 130, 26–36 (2017)

    Article  CAS  Google Scholar 

  20. A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. Part B Eng. 149, 188–197 (2018)

    Article  CAS  Google Scholar 

  21. X. Du, T. Gao, D. Li, Y. Wu, X. Liu, J. Alloys Compd. 588, 374–377 (2014)

    Article  CAS  Google Scholar 

  22. M. Karbasi, M. Razavi, M. Taheri, D. Vashaee, L. Tayebi, Micro Nano Lett 8, 9 (2013)

    Article  Google Scholar 

  23. P. Wang, L. Cheng, Y. Zhang, L. Zhang, J. Alloys Compd. 716, 306–320 (2017)

    Article  CAS  Google Scholar 

  24. A.B. Kheradmand, Z. Lalegani, J. Mater. Sci. Mater. Electron. 26, 10 (2015)

    Article  Google Scholar 

  25. A. Kumar, R.K. Gautam, R. Tyagi, Compos. Interfaces. 23, 6 (2016)

    Google Scholar 

  26. N.N. Lu, X.J. Wang, L.L. Meng, C. Ding, W.Q. Liu, H.L. Shi, X.S. Hu, K. Wu, J. Alloys Compd. 650, 871–877 (2015)

    Article  CAS  Google Scholar 

  27. O.A. Elkady, S.A. Abolkassem, A.H. Elsayed, W.A. Hussein, K.F.A. Hussein, Results Phys. 12, 687–700 (2019)

    Article  Google Scholar 

  28. Z. Xu, H. Hao, J Alloy Comp. 617, 207–213 (2014)

    Article  CAS  Google Scholar 

  29. Z. Nissar, A. Kazi, M. Safiulla, M. Faisal, Mater. Today Proc. 4, 11 (2017)

    Google Scholar 

  30. X. Sauvage, E.V. Bobruk, M.Yu Murashkin, Y. Nasedkin, N.A. Enikeev, R.Z. Valiev, Acta Materialia, 98 (2015)

  31. B. Feldman, S. Park, M. Haverty, S. Shankar, S.T. Dunham, physica status solidi (b) 247, 7 (2010)

    Article  Google Scholar 

  32. A.F. Mayadas, M. Shatzkes, Phys. Rev. B 1, 4 (1970)

    Article  Google Scholar 

  33. S. Budumuru, in M.S. Anuradha in Microelectronics, Electromagnetics and Telecommunications, ed. by eds. (Bhateja ((Springer, New York, 2019), p. 467

    Google Scholar 

  34. G. Wu, G.X. Huang, Z. Dou, S. Chen, L. Jiang, J. Mater. Sci. 42, 8 (2007)

    CAS  Google Scholar 

  35. S. Loya, H. Khan, Int. J. Electro. Magn. Appl. 6, 9 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization & formal analysis and investigation & resources: TAJMP, writing—original draft preparation & writing—review and editing: JDRS, methodology: ID, and formal analysis: EP.

Corresponding author

Correspondence to Jebaraj David Raja Selvam.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushpa, T., Selvam, J., Dinaharan, I. et al. Electromagnetic interference shielding effectiveness of in situ-synthesized ultrafine SiC- and Al2O3-reinforced AA6061 aluminum matrix composites. J Mater Sci: Mater Electron 33, 3774–3785 (2022). https://doi.org/10.1007/s10854-021-07569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07569-9

Navigation