Skip to main content
Log in

Improving bias-stress stability of p-type organic field-effect transistors by suppressing electron injection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bias-stress instability has been a challenging problem, severely hindering the practical applications of organic field-effect transistors (OFETs). In this work, we demonstrate a universal strategy to improve the bias-stress stability of p-type OFETs by modifying the source/drain electrode with wide bandgap organic semiconductors. In the strategy, a type-I energy level alignment is established at the organic/organic interface. Thanks to the high lowest unoccupied molecular orbital (LUMO) of wide bandgap semiconductors, the interfacial barrier at the metal electrode/organic semiconductor interface is risen, and thereby suppressing the electron injection from the drain electrode into the organic semiconducting channel. It is borne out that, the bias-stress instability of p-type OFETs is ascribed to an electron-injection-induced hole neutralization in the organic semiconducting solid films. By increasing the interfacial barrier, the hole neutralization can be eased due to the suppression of electron injection, and thereby the bias-stress stability of OFETs is improved, e.g., elimination of threshold voltage shift, and inhibition of working current attenuation under long-term device operation. A series of physical models are proposed to quantitatively analyze the dynamics of hole neutralization and the bias-stress stability relative to energy level alignment and interfacial electron-injection barrier. It is revealed that the electron injection across the interfacial barrier obeys a Fowler–Nordheim tunneling theory. By using wide bandgap organic semiconductors with high LUMO for the electrode modification, the electron-injection efficiency is reduced effectively, and thereby the bias-stress stability of p-type OFETs can be improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. He, Z. Zhang, S. Bi, J. Mater. Sci. 30(24), 20899 (2019)

    CAS  Google Scholar 

  2. B. Shao, S. Han, S. Hou, H. Zeng, X. Yu, J. Yu, J. Mater. Sci. 30(23), 20638 (2019)

    CAS  Google Scholar 

  3. S. Park, S.H. Kim, H.H. Choi, B. Kang, K. Cho, Adv. Funct. Mater. 30, 1904590 (2020)

    Article  CAS  Google Scholar 

  4. W.H. Lee, H.H. Choi, D.H. Kim, K. Cho, Adv. Mater. 26, 1660 (2014)

    Article  CAS  Google Scholar 

  5. S. Barard, D. Mukherjee, S. Sarkar, T. Kreouzis, I. Chambrier, A.N. Cammidge, A.K. Ray, J. Mater. Sci. 31(1), 265 (2020)

    CAS  Google Scholar 

  6. M. Kunii, H. Iino, J. Hanna, Appl. Phys. Lett. 110, 243301 (2017)

    Article  Google Scholar 

  7. S.M. Obaidulla, S. Singh, Y.N. Mohapatra, P.K. Giri, J. Phys. D 51, 015110 (2018)

    Article  Google Scholar 

  8. T. Mukhopadhyaya, H.E. Katz, J. Mater. Chem. C 9, 3531 (2021)

    Article  CAS  Google Scholar 

  9. J. Lee, H. Min, N. Park, H. Jeong, S. Han, S.H. Kim, W.S. Lee, A.C.S. Appl, Mater. Interfaces 7, 25045 (2015)

    Article  CAS  Google Scholar 

  10. J.F. Chang, K.S. Hou, Y.W. Yang, C.H. Wang, Y.X. Chen, H.D. Ke, Org. Electron. 81, 105689 (2020)

    Article  CAS  Google Scholar 

  11. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, Nature 431, 963 (2004)

    Article  CAS  Google Scholar 

  12. D.H. Kwak, H.H. Choi, J.E. Anthony, S. Kim, H. Chae, J. Hwang, S. Lee, H.J. Park, B.G. Kim, W.H. Lee, Org. Electron. 85, 105878 (2020)

    Article  CAS  Google Scholar 

  13. A. Nawaz, I.A. Hümmelgen, J. Mater. Sci. 30(6), 5299 (2019)

    CAS  Google Scholar 

  14. Z. Liu, A.A. Bol, W. Haensch, Nano Lett. 11, 523 (2011)

    Article  CAS  Google Scholar 

  15. Z. He, S. Bi, K. Asare-Yeboah, Z. Zhang, J. Mater. Sci. 31(6), 4503 (2020)

    CAS  Google Scholar 

  16. S. Sanda, R. Nakamichi, T. Nagase, T. Kobayashi, K. Takimiya, Y. Sadamitsu, H. Naito, Org. Electron. 69, 181 (2019)

    Article  CAS  Google Scholar 

  17. Z. He, Z. Zhang, K. Asare-Yeboah, S. Bi, J. Mater. Sci. 30(15), 14335 (2019)

    CAS  Google Scholar 

  18. C. Wang, B. Fu, X. Zhang, R. Li, H. Dong, W. Hu, ACS Cent. Sci. 6, 636 (2020)

    Article  CAS  Google Scholar 

  19. Y. Sun, Z. Zhang, K. Asare-Yeboah, S. Bi, Z. He, Electron. Mater. Lett. 17, 33–42 (2021)

    Article  CAS  Google Scholar 

  20. Z. He, Z. Zhang, S. Bi, Mater. Res. Express. 7, 012004 (2020)

    Article  CAS  Google Scholar 

  21. Z. Zhang, Z. He, S. Bi, K. Asare-Yeboah, J. Sci. 5(2), 151–163 (2020)

    Google Scholar 

  22. H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, J. Mater. Chem. C 8, 759 (2020)

    Article  CAS  Google Scholar 

  23. X. Wu, R. Jia, J. Jie, M. Zhang, J. Pan, X. Zhang, X. Zhang, Adv. Funct. Mater. 29, 1906653 (2019)

    Article  CAS  Google Scholar 

  24. P.A. Bobbert, A. Sharma, S.G.J. Mathijssen, M. Kemerink, D.M. Leeuw, Adv. Mater. 24, 1146 (2012)

    Article  CAS  Google Scholar 

  25. G. Zhou, S. Zhou, Q. Zhu, N. Zhao, Adv. Electron. Mater. 5, 1900055 (2019)

    Article  Google Scholar 

  26. Z. Yang, C. Guo, C. Shi, D.K. Wang, T. Zhang, Q. Zhu, Z.H. Lu, A.C.S. Appl, Mater. Interfaces 12, 41886 (2020)

    Article  CAS  Google Scholar 

  27. B. Lee, A. Wan, D. Mastrogiovanni, J.E. Anthony, E. Garfunkel, V. Podzorov, Phys. Rev. B 82, 085302 (2010)

    Article  Google Scholar 

  28. I.C. Chen, S. Holland, C. Hu, J. Appl. Phys. 61, 4544 (1987)

    Article  CAS  Google Scholar 

  29. C. Siol, C. Melzer, H. von Seggern, Appl. Phys. Lett. 93, 357 (2008)

    Article  Google Scholar 

  30. M. Kano, T. Minari, K. Tsukagoshi, Appl. Phys. Lett. 94, 143304 (2009)

    Article  Google Scholar 

  31. M.J. Ford, M. Wang, K.C. Bustillo, J. Yuan, T.Q. Nguyen, G.C. Bazan, ACS Nano 12, 7134 (2018)

    Article  CAS  Google Scholar 

  32. H. Phan, M. Wang, G.C. Bazan, T.Q. Nguyen, Adv. Mater. 27, 7004 (2015)

    Article  CAS  Google Scholar 

  33. P.J. Diemer, Z.A. Lamport, Y. Mei, J.W. Ward, K.P. Goetz, W. Li, M.M. Payne, M. Guthold, J.E. Anthony, O.D. Jurchescu, Appl. Phys. Lett. 107, 103303 (2015)

    Article  Google Scholar 

  34. P. Devaux, J. Mas, Solid State Commun. 7, 1095 (1969)

    Article  CAS  Google Scholar 

  35. J.H. Schon, C. Kloc, B. Batlogg, Phys. Rev. B. 63, 245201 (2001)

    Article  Google Scholar 

  36. T.G. Abdel-Malik, A.M. Abdeen, A.A. Aly, Phys. Stat. Sol. 70, 703 (1982)

    Article  CAS  Google Scholar 

  37. L. Stuchlikova, M. Weis, P. Juhasz, A. Kosa, L. Harmatha, J. Jakabovic, Acta. Phys. Pol. A 125, 1038 (2014)

    Article  Google Scholar 

  38. M. Waldrip, O.D. Jurchescu, D.J. Gundlach, E.G. Bittle, Adv. Funct. Mater. 30(20), 1904576 (2020)

    Article  CAS  Google Scholar 

  39. S.G.J. Mathijssen, M.J. Spijkman, A.M. Andringa, P.A. Hal, I. McCulloch, M. Kemerink, R.A.J. Janssen, D.M. Leeuw, Adv. Mater. 22, 5105 (2010)

    Article  CAS  Google Scholar 

  40. S. Olthof, W. Tress, R. Meerheim, B. Lussem, K. Leo, J. Appl. Phys. 106, 103711 (2009)

    Article  Google Scholar 

  41. R.G. Forbes, J.H.B. Deane, Proc. R. Soc. A. 463, 2907 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the funding from National Natural Science Foundation of China (Grant No., 62164012, 11774304, 61904159), and Applied Basic Research Foundation of Yunnan Province (Grant No. 202101AT070025). We gratefully acknowledge the experimental support from Key Laboratory of Yunnan Provincial Higher Education Institutions for Optoelectronics Device Engineering.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Device preparation, data collection and analysis were performed by CG, ZY, LQ, JM, TZ, DKW, ZHL and QZ. The first draft of the manuscript was written by CG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1195 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Yang, Z., Qin, L. et al. Improving bias-stress stability of p-type organic field-effect transistors by suppressing electron injection. J Mater Sci: Mater Electron 33, 3726–3737 (2022). https://doi.org/10.1007/s10854-021-07564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07564-0

Navigation