Skip to main content

Advertisement

Log in

Investigating the physical, mechanical, and reliability study of high entropy alloy reinforced Sn–3.0Ag–0.5Cu solder using 1608 chip capacitor/ENIG joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2022

This article has been updated

Abstract

High entropy alloy (HEA) receives noticeable attention in the electronic industry, and one of the best ways to incorporate HEA with the existing assembly setup is to reinforce HEA particles in Pb-free solder. This paper investigates the properties of Sn3.5Ag0.5Cu (SAC 305) solder reinforced with HEA particles. FeCoCrNiCu particle was synthesized via ball milling and dispersed in SAC 305 paste by powder mixing technique. DSC analysis confirms a reduction in melting temperature and undercooling with the addition of HEA. The dispersion of HEA in the solder resulted in a significant refinement in β-Sn grain size, Ag3Sn, and Cu6Sn5 IMC particle size. Also, SAC 305 with 0.2 wt% HEA noted a better spreading performance and lowest contact angle. 1608 chip capacitor/HEA reinforced solder joint was assembled, subjected to − 40 to + 125 °C thermal shock, and tested for the shear strength. The reliability analyzed through Weibull analysis showed a 30% increase in the 75% survival probability strength for HEA-added joints. Also, HEA addition till 0.1 wt% suppressed the growth of (Cu, Ni)6Sn5 IMC after thermal shock cycles. After 1000 thermal shock cycles, 0.1 wt% HEA-added solder retained the shear strength of 22.5 MPa, equivalent to the strength exhibited by the SAC 305 in the as-reflow condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data will be made available upon reasonable request.

Change history

References

  1. S. Wang, C. Liu, Study of interaction between Cu–Sn and Ni–Sn interfacial reactions by Ni–Sn3.5Ag–Cu sandwich structure. J. Electron. Mater. 32, 1303–1309 (2003)

    Article  CAS  Google Scholar 

  2. X. Liu, M. Huang, N. Zhao, L. Wang, Liquid-state and solid-state interfacial reactions between Sn–Ag–Cu–Fe composite solders and Cu substrate. J. Mater. Sci. Mater. Electron. 25, 328–337 (2014)

    Article  CAS  Google Scholar 

  3. D.C. Lin, T.S. Srivatsan, G.-X. Wang, R. Kovacevic, Microstructural development in a rapidly cooled eutectic Sn–3.5% Ag solder reinforced with copper powder. Powder Technol. 166, 38–46 (2006)

    Article  CAS  Google Scholar 

  4. Y. Liu, K.N. Tu, Low melting point solders based on Sn, Bi, and In elements. Mater. Today Adv. 8, 100115 (2020)

    Article  Google Scholar 

  5. P.T. Vianco, K.L. Erickson, P.L. Hopkins, Solid state intermetallic compound growth between copper and high temperature, Tin-rich solders part I: experimental analysis. J. Electron. Mater. 23(721), 721–727 (1994)

    Article  CAS  Google Scholar 

  6. S. Tikale, K.N. Prabhu, Bond shear strength of Al2O3 nanoparticles reinforced 2220-capacitor/SAC305 solder interconnects reflowed on bare and Ni-coated copper substrate. J. Mater. Sci. Mater. Electron. 32, 2865–2886 (2021)

    Article  CAS  Google Scholar 

  7. A. Lis, C. Kenel, C. Leinenbach, Characteristics of reactive Ni3Sn4 formation and growth in Ni–Sn interlayer systems. Metall. Mater. Trans. A 47, 2596–2608 (2016)

    Article  CAS  Google Scholar 

  8. M. Huang, F. Yang, Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate. Sci Rep 4, 7117 (2014)

    Article  CAS  Google Scholar 

  9. T. Laurila, V. Vuorinen, M. Paulasto-Kröckel, Impurity and alloying effects on interfacial reaction layers in Pb-free soldering. Mater. Sci. Eng. R Rep. 68, 1–38 (2010)

    Article  CAS  Google Scholar 

  10. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R Rep. 82, 1–32 (2014)

    Article  Google Scholar 

  11. P. Yao, J. Ping, Liu, Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu–xNi composite solder joints on electrolytic Ni/Au metallized substrate. J. Alloy. Compd. 462, 73–79 (2008)

    Article  CAS  Google Scholar 

  12. F. Cheng, H. Nishikawa, T. Takemoto, Microstructural and mechanical properties of Sn–Ag–Cu lead-free solders with minor addition of Ni and/or Co. J. Mater. Sci. 43, 3643–3648 (2008)

    Article  CAS  Google Scholar 

  13. S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, Effect of addition Cobalt nanoparticles on Sn-Ag-Cu lead-free solder, 2010, in 12th Electronics Packaging Technology Conference, (2010), pp. 433-436

  14. G. Sujan, A. Haseeb, A. Afifi, Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate. Mater Charact. 97, 199–209 (2014)

    Article  CAS  Google Scholar 

  15. A. Yakymovych, P. Švec, L. Orovcik, O. Bajana, H. Ipser, Nanocomposite SAC Solders: the effect of adding Ni and Ni–Sn nanoparticles on morphology and mechanical properties of Sn–3.0Ag–0.5Cu solders. J. Electron. Mater. 47, 117–123 (2018)

    Article  CAS  Google Scholar 

  16. S. Tikale, K.N. Prabhu, Performance and reliability of Al2O3 nanoparticles doped multicomponent Sn–3.0Ag–0.5Cu–Ni–Ge solder alloy. Microelectron. Reliab. 113(1–14), 113933 (2020)

    Article  CAS  Google Scholar 

  17. S.H. Rajendran, S.J. Hwang, J.P. Jung, Shear strength and aging characteristics of Sn–3.0Ag–0.5Cu/Cu solder joint reinforced with ZrO2 nanoparticles. Metals 10, 1295 (2020)

    Article  Google Scholar 

  18. S. Nai, J. Wei, M. Gupta, Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder. J. Electron. Mater. 37, 515–522 (2008)

    Article  CAS  Google Scholar 

  19. M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107–123 (2014)

    Article  CAS  Google Scholar 

  20. K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high entropy alloys. Acta Mater. 61(3), 4887–4897 (2013)

    Article  CAS  Google Scholar 

  21. J. Peng, L. Fu, Y. Sun, Z. Li, X. Ji, A. Shan, Thermal expansion-adjustable carbon-doped FeCoCrNiMn high-entropy alloys for electronic packaging. J. Mater. Sci. Mater. Electron. 31, 19366–19380 (2020)

    Article  CAS  Google Scholar 

  22. Y. Liu, L. Pu, Y. Yang, Q. He, Z. Zhou, C. Tan, X. Zhao, Q. Zhang, K.N. Tu, A high-entropy alloy as very low melting point solder for advanced electronic packaging. Mater. Today Adv. 7, 100101 (2020)

    Article  Google Scholar 

  23. L. Pu, Y. Liu, Y. Yang, Q. He, Z. Zhou, X. Zhao, C. Tan, K.N. Tu, Effect of adding Ag to the medium entropy SnBiIn alloy on intermetallic compound formation. Mater. Lett. 272, 127891 (2020)

    Article  CAS  Google Scholar 

  24. Y.-A. Shen, H.-M. Hsieh, S.-H. Chen, J. Li, S.-W. Chen, H. Nishikawa, Investigation of FeCoNiCu properties: thermal stability, corrosion behavior, wettability with Sn–3.0Ag–0.5Cu and interlayer formation of multi-element intermetallic compound. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.148931

    Article  Google Scholar 

  25. JIS: Test methods for soldering fluxes, JIS Z 3197:2012, (Japanese Standards Association, 2012)

  26. JEDEC, Test methods for temperature cycling, JESD22-A-104F, Joint Electron Device Engineering Council (Solid State Technology Association, 2020)

  27. S. Praveen, B.S. Murty, R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng. A 534, 83–89 (2012)

    Article  CAS  Google Scholar 

  28. R. SreeGanji, P.S. Karthik, K.B.S. Rao, K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58–68 (2017)

    Article  CAS  Google Scholar 

  29. A. Kumar, P. Dhekne, A.K. Swarnakar, M. Chopkar, Phase evolution of CoCrCuFeNiSix high-entropy alloys prepared by mechanical alloying and spark plasma sintering. Mater. Res. Express 6, 026532 (2019)

    Article  CAS  Google Scholar 

  30. S. Singh, S.M. Shaikh, M.K. PunithKumar, B.S. Murty, C. Srivastava, Microstructural homogenization and substantial improvement in corrosion resistance of mechanically alloyed FeCoCrNiCu high entropy alloys by incorporation of carbon nanotubes. Materialia 14, 100917 (2020)

    Article  CAS  Google Scholar 

  31. R.-F. Zhao, B. Ren, G.-P. Zhang, Z.-X. Liu, J.-J. Zhang, Phase transition of as-milled and annealed CrCuFeMnNi high-entropy alloy powder. NANO Brief Rep. Rev. 9, 1850100 (2018)

    Google Scholar 

  32. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 9, 2221–2230 (2018)

    Article  CAS  Google Scholar 

  33. Y. Xie, D. Zhou, Y. Luo, T. Xia, W. Zeng, C. Li, J. Wang, D. Zhang, Fabrication of CoCrFeNiMn high entropy alloy matrix composites by thermomechanical consolidation of a mechanically milled powder. Mater. Charact. 148, 307–316 (2019)

    Article  CAS  Google Scholar 

  34. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, E. J.Lavernia, Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater 107, 59–71 (2016)

    Article  CAS  Google Scholar 

  35. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  36. S.A. Belyakov, C.M. Gourlay, The influence of Cu on metastable NiSn4 in Sn–3.5Ag–xCu/ENIG joints. J. Electron. Mater. 45, 12–20 (2016)

    Article  CAS  Google Scholar 

  37. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, Malcolm stocks, criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015)

    Google Scholar 

  38. A.A. El-Daly, A. Fawzy, S.F. Mansour, M.J. Younis, Thermal analysis and mechanical properties of Sn–1.0Ag–0.5Cu solder alloy after modification with SiC nano-sized particles. J. Mater. Sci. Mater. Electron. 24, 2976–2988 (2013)

    Article  CAS  Google Scholar 

  39. S.K. Kang, W.K. Choi, D.-Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, Puttlitz, Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu. JOM 55, 61–65 (2003)

    Article  CAS  Google Scholar 

  40. P.T. Vianco, A review of interface microstructures in electronic packaging applications: soldering technology. JOM 71, 158–177 (2019)

    Article  CAS  Google Scholar 

  41. H. Sun, Y.C. Chan, F. Wu, Reliability performance of tin–bismuth–silver (Sn57.6Bi0.4Ag) solder joints with different content of carbon nano-tubes (CNTs) or nickel (Ni)-modified CNTs. J. Mater. Sci. Mater. Electron. 29, 8584–8593 (2018)

    Article  CAS  Google Scholar 

  42. M. Hosking, F.G. Yost, The Mechanics of Solder Alloy Wetting and Spreading (Springer, Berlin, 1993)

    Google Scholar 

  43. M. Said, A.A. Mohammad, Wettability, microstructure and tensile properties of Sn–3.0Ag–0.5Cu solder alloy prepared by reflow oven and susceptor-assisted microwave. AIP Conf. Proc. 2267, 020004 (2020)

    Article  CAS  Google Scholar 

  44. T. Lu, D. Yi, H. Wang, X. Tu, B. Wang, Microstructure, mechanical properties and interface reaction with Cu substrate of Zr-modified SAC 305 solder. J. Alloys Compd. 781, 633–643 (2019)

    Article  CAS  Google Scholar 

  45. H.T. Lee, Y.H. Lee, Effects of in-situ nickel particle addition on the microstructure and microhardness of Sn–Ag solder. Sci. Technol. Weld Join. 3, 353–360 (2005)

    Article  CAS  Google Scholar 

  46. Y.W. Wang, C.R. Kao, Minor Fe, Co, and Ni additions to SnAgCu solders for retarding Cu3Sn growth, in 2008 International Conference on Electronic Materials and Packaging, (2008), pp. 76-79

  47. J. Banga, D.-Y. Yu, Y.-H. Ko, J.-H. Son, H. Nishikawa, C.-W. Lee, Intermetallic compound growth between Sn–Cu–Cr lead-free solder and Cu Substrate. Microelectron. Reliab. 99, 62–73 (2019)

    Article  CAS  Google Scholar 

  48. L. Xu, J.H.L. Pang, F.X. Che, Intermetallic Growth and Failure Study for Sn-Ag-Cu/ENIG PBGA Solder Joints Subject to Thermal Cycling, in Proceedings Electronic Components and Technology, 2005. ECTC ‘05., (2005), pp. 682–686. https://doi.org/10.1109/ECTC.2005.1441342

  49. S.W. Chen, S.H. Wu, S.W. Lee, Interfacial reactions in the Sn–(Cu)/Ni, Sn–(Ni)/Cu, and Sn/(Cu,Ni) systems. J. Electron. Mater. 32, 1188–1194 (2003)

    Article  Google Scholar 

  50. C.E. Ho, S.C. Yang, C.R. Kao, Interfacial reaction issues for lead-free electronic solders. J. Mater. Sci. Mater. Electron. 18, 155–174 (2007)

    Article  CAS  Google Scholar 

  51. X. Deng, G. Piotrowski, J.J. Williams, N. Chawla, Influence of initial morphology and thickness of Cu6Sn5 and Cu3Sn intermetallics on growth and evolution during thermal aging of Sn–Ag solder/Cu joints. J. Electron. Mater. 12, 1403–1413 (2003)

    Article  Google Scholar 

  52. K.N. Tu, R.D. Thompson, Kinetics of interfacial reaction in bimetallic Cu3Sn thin films. Acta Metall. 30, 947–952 (1982)

    Article  CAS  Google Scholar 

  53. Y. Tian, X. Liu, J. Chow, Y.P. Wu, S.K. Sitaraman, Comparison of Sn–Ag–Cu solder alloy intermetallic compound growth under different thermal excursions for fine-pitch flip-chip assemblies. J. Electron. Mater. 8(42), 2724–2731 (2013)

    Article  CAS  Google Scholar 

  54. T.-K. Lee, C.-U. Kim, T.R. Bielerd, Influence of high-G mechanical shock and thermal cycling on localized recrystallization in Sn–Ag–Cu solder interconnects. J. Electron. Mater. 1, 69–79 (2014)

    Article  CAS  Google Scholar 

  55. N.M. Poon, C.M.L. Wu, J.K.L. Lai, Y.C. Chan, Residual shear strength of Sn–Ag and Sn–Bi lead-free SMT joints after thermal shock. IEEE Trans. Adv. Packag. 4, 708–714 (2000). https://doi.org/10.1109/6040.883762

    Article  Google Scholar 

  56. T. An, F. Qin, Intergranular cracking simulation of the intermetallic compound layer in solder joints. Comput. Mater. Sci. 79, 1–14 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2020R1A2C1009851).

Author information

Authors and Affiliations

Authors

Contributions

SHR Methodology, Formal analysis, Conceptualization, writing—original draft, review & editing; DHJ Resources; JPJ Supervision and Funding.

Corresponding author

Correspondence to Jae Pil Jung.

Ethics declarations

Conflict of interest

The authors have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, S.H., Jung, D.H. & Jung, J.P. Investigating the physical, mechanical, and reliability study of high entropy alloy reinforced Sn–3.0Ag–0.5Cu solder using 1608 chip capacitor/ENIG joints. J Mater Sci: Mater Electron 33, 3687–3710 (2022). https://doi.org/10.1007/s10854-021-07562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07562-2

Navigation