Skip to main content
Log in

Enhanced sensitivity of hydrogenated α-Fe2O3 nanoplates having {001} facets and the gas sensing mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hexagonal α-Fe2O3 nanoplates exposing {001} crystal planes have been synthesized by using ethanol as the control agent of crystal facets. The as-synthesized nanoplates exhibit higher responses to ethanol, methanol and triethylamine than commercial powders, and the responses can be further increased by hydrogenation. The enhancement of sensitivity is attributed to an increase in density of 3-coordinated Fe (Fe3c) atoms at the exposed (001) crystal plane after hydrogenating. The unsaturated Fe3c atoms at the Fe-terminated polar (001) surface are evidenced to serve as an active site for gas sensing, and a gas sensing mechanism at atomic scale is presented. On the (001) surface, the 3-coordinated Fe atoms adsorb oxygen and catalyzes the reaction of the adsorb oxygen with test gases. The adsorption and desorption of oxygen leads to a change in resistance of the α-Fe2O3 nanoplate sensor. This mechanism is instructive for the comprehending of gas sensing reactions, and the design of highly sensitivity gas sensing materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

2005 The American Physical Society. c IR spectrum of the as-synthesized α-Fe2O3 hexagonal nanosheets. d The possible actual structure of (001) surface of the as-synthesized α-Fe2O3 hexagonal nanosheets

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All experiment data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z.Y. Jiang, Q. Kuang, Z.X. Xie, L.S. Zheng, Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 20, 3634–3645 (2010)

    Article  CAS  Google Scholar 

  2. Q. Kuang, X. Wang, Z.Y. Jiang, Z.X. Xie, L.S. Zheng, High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications. Acc. Chem. Res. 47, 308–318 (2014)

    Article  CAS  Google Scholar 

  3. Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40, 4167–4185 (2011)

    Article  CAS  Google Scholar 

  4. Y.D. Li, K.B. Zhou, Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 51, 602–613 (2012)

    Article  Google Scholar 

  5. L.C. Hsu, Y.Y. Li, C.Y. Hsiao, Synthesis, electrical measurement, and field emission properties of α-Fe2O3 nanowires nanoscale. Res. Lett. 3, 330–337 (2008)

    CAS  Google Scholar 

  6. J.P. Lu, T. Yun, M.R. Zheng, S.C. Haur, Enhanced field emission properties of α-Fe2O3 nanostructures with the removal of adsorbed gas molecules. J. Phys. Chem. C. 115, 8816–8824 (2011)

    CAS  Google Scholar 

  7. C. Rath, K.K. Sahu, S.D. Kulkarni, S. Anand, S.K. Date, R.P. Das, N.C. Mishra, Microstructure-dependent coercivity in monodispersed hematite particles. Appl. Phys. Lett. 75, 4171–4173 (1999)

    Article  CAS  Google Scholar 

  8. L. Bao, H.Q. Yang, X.W. Wang, F.H. Zhang, R.Y. Shi, B. Liu, L. Wang, H. Zhao, Synthesis and size-dependent magnetic properties of single-crystalline hematite nanodiscs. J. Cryst. Growth 328, 62–69 (2011)

    Article  CAS  Google Scholar 

  9. P.H. Yang, Y. Ding, Z.Y. Lin, Z.W. Chen, Y.Z. Li, P.F. Qiang, M. Ebrahimi, W.J. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano. Lett. 14, 731–736 (2014)

    Article  CAS  Google Scholar 

  10. S.H. Yang, X.F. Song, P. Zhang, L. Gao, Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS. Appl. Mater. Interfaces 7, 75–79 (2015)

    Article  CAS  Google Scholar 

  11. S.M. Xu, C.M. Hessel, H. Ren, R.B. Yu, Q. Jin, M. Yang, H.J. Zhao, D. Wang, α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7, 632–637 (2014)

    Article  CAS  Google Scholar 

  12. B. Wang, J.S. Chen, H.B. Wu, Z.Y. Wang, X.W. Lou, Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146–17148 (2011)

    Article  CAS  Google Scholar 

  13. H.H. Niu, S.W. Zhang, Q. Ma, S.X. Qin, L. Wan, J.Z. Xu, S.D. Miao, Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide-polyaniline composite as a counter electrode. RSC. Adv. 3, 17228–17235 (2013)

    Article  CAS  Google Scholar 

  14. Y. Hou, D. Wang, X.H. Yang, W.Q. Fang, B. Zhang, H.F. Wang, G.Z. Lu, P. Hu, H.J. Zhao, H.G. Yang, Rational screening low-cost counter electrodes for dye-sensitized solar cells. Nat. Commun. 4, 1583 (2013)

    Article  Google Scholar 

  15. S.T. Xie, F. Lu, N. Sun, S.J. Liu, H. Jia, L.Q. Zheng, Facile one-step preparation of hierarchical α-Fe2O3 nanostructures with enhanced performance in energy and environmentally related applications. Cryst. Eng. Comm. 16, 9727–9734 (2014)

    Article  CAS  Google Scholar 

  16. X.M. Zhou, J.Y. Lan, G. Liu, K. Deng, Y.L. Yang, G.J. Nie, J.G. Yu, L.J. Zhi, Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew. Chem. Int. Ed. 51, 178–182 (2012)

    Article  CAS  Google Scholar 

  17. H. Mashiko, K. Yoshimatsu, T. Oshima, A. Ohtomo, Fabrication and characterization of semiconductor photoelectrodes with orientation-controlled α-Fe2O3 thin films. J. Phys. Chem. C. 120, 2747–2752 (2016)

    Article  CAS  Google Scholar 

  18. K. Sivula, F.L. Formal, M. Gratzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sustain. Chem. 4, 432–449 (2011)

    Article  CAS  Google Scholar 

  19. G.H. Qiu, H. Huang, H. Genuino, N. Opembe, L. Stafford, S. Dharmarathna, S.L. Suib, Microwave-assisted hydrothermal synthesis of nanosized α-Fe2O3 for catalysts and adsorbents. J. Phys. Chem. C. 115, 19626–19631 (2011)

    Article  CAS  Google Scholar 

  20. N.Q. Long, T.X. Loc, Experimental and modeling study on room-temperature removal of hydrogen sulfide using a low-cost extruded Fe2O3-based adsorbent. Adsorption 22, 397–408 (2016)

    Article  Google Scholar 

  21. O. Lupan, V. Postica, N. Wolff, O. Polonskyi, V. Duppel, V. Kaidas, E. Lazari, N. Ababii, F. Faupel, L. Kienle, R. Adelung, Localized synthesis of Iron oxide nanowires and fabrication of high performance nanosensors based on a single Fe2O3 nanowire. Small 13, 1602868 (2017)

    Article  Google Scholar 

  22. C.Q. Jin, C.H. Ge, G. Xu, G. Petersonb, Z.Y. Jiana, Y.X. Weia, K.X. Zhu, Influence of nanoparticle size on ethanol gas sensing performance of mesoporous α-Fe2O3 hollow spheres. Mater. Sci. Eng. B 224, 158–162 (2017)

    Article  CAS  Google Scholar 

  23. C. Liu, Y.L. Wang, P.L. Zhao, W.B. Li, Q.J. Wang, P. Sun, X.H. Chuai, G.Y. Lu, Porous α-Fe2O3 microflowers: synthesis, structure, and enhanced acetone sensing performances. J. Colloid Interface Sci. 505, 1039–1046 (2017)

    Article  CAS  Google Scholar 

  24. X.X. Guo, J.B. Zhang, M.C. Ni, L. Liu, H.W. Lian, H. Wang, Comparison of gas sensing properties based on hollow and porous α-Fe2O3 nanotubes. J. Mater. Sci. Mater Electron 27, 11262–11267 (2016)

    Article  CAS  Google Scholar 

  25. P. Sun, Y.W. Liu, X.W. Li, Y.F. Sun, X.S. Liang, F.M. Liu, G.Y. Lu, Facile synthesis and gas-sensing properties of monodisperse α-Fe2O3 discoid crystals. RSC. Adv. 2, 9824–9829 (2012)

    Article  CAS  Google Scholar 

  26. K. Tian, X.X. Wang, Z.Y. Yu, H.Y. Li, X. Guo, Hierarchical and hollow Fe2O3 nanoboxes derived from metal-organic frameworks with excellent sensitivity to H2S. ACS. Appl. Mater. Interfaces 9, 29669–29676 (2017)

    Article  CAS  Google Scholar 

  27. L.L. Wang, Z. Lou, J.N. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk-shell (Core-Shell) α-Fe2O3 nanospheres as sensing material. ACS. Appl. Mater. Interfaces 7, 13098–13104 (2015)

    Article  CAS  Google Scholar 

  28. X.L. Li, W.J. Wei, S.Z. Wang, L. Kuai, B.Y. Geng, Single-crystalline α-Fe2O3 oblique nanoparallelepipeds: high-yield synthesis, growth mechanism and structure enhanced gas-sensing properties. Nanoscale 3, 718–724 (2011)

    Article  CAS  Google Scholar 

  29. X.H. Liu, J. Zhang, S.H. Wu, D.Y. Yang, P. Liu, H.M. Zhang, S.R. Wang, X.D. Yao, G.S. Zhu, H.J. Zhao, Single crystal α-Fe2O3 with exposed 104 facets for high performance gas sensor applications. RSC. Adv. 2, 6178–6184 (2012)

    Article  CAS  Google Scholar 

  30. J.J. Ouyang, J. Pei, Q. Kuang, Z.X. Xie, L.S. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ACS. Appl. Mater. Interfaces 6, 12505–12514 (2014)

    Article  CAS  Google Scholar 

  31. L.Q. Sun, X. Han, K. Liu, S. Yin, Q.L. Chen, Q. Kuang, X.G. Han, Z.X. Xie, C. Wang, Template-free construction of hollow α-Fe2O3 hexagonal nanocolumn particles with an exposed special surface for advanced gas sensing properties. Nanoscale 7, 9416–9420 (2015)

    Article  CAS  Google Scholar 

  32. Y. Ma, J. Yang, Y.K. Yuan, H. Zhao, Q. Shi, F.J. Zhang, C.J. Pei, B. Liu, H.Q. Yang, Enhanced gas sensitivity and sensing mechanism of network structures assembled from α-Fe2O3 nanosheets with exposed 104 facets. Langmuir 33, 8671–8678 (2017)

    Article  CAS  Google Scholar 

  33. Y. Ren, J. Yang, Y. Ma, B. Liu, X. Zhang, L. Wang, Y.K. Yuan, J.F. Liu, M.Z. Wang, Q. Du, H. Zhao, H.Q. Yang, Increasing sensing sensitivity of the Fe-α-Fe2O3 (104) surface by hydrogenation and the sensing reaction molecule mechanism. Sens. Actuators B Chem. 281, 366–374 (2019)

    Article  CAS  Google Scholar 

  34. Z. Liu, B.L. Lv, Y. Xu, D. Wu, Hexagonal α-Fe2O3 nanorods bound by high-index facets as high-performance electrochemical sensor. J. Mater. Chem. A 1, 3040–3046 (2013)

    Article  CAS  Google Scholar 

  35. Q.L. Yuan, P.F. Li, J. Liu, Y. Lin, Y.Y. Cai, Y.X. Ye, C.H. Liang, Facet-dependent selective adsorption of Mn-doped α-Fe2O3 nanocrystals toward heavy-metal ions. Chem. Mater. 29, 10198–10205 (2017)

    Article  CAS  Google Scholar 

  36. C. Lemire, S. Bertarione, A. Zecchina, D. Scarano, A. Chaka, S. Shaikhutdinov, H.J. Freund, Ferryl (Fe=O) termination of the hematite α-Fe2O3(0001) surface. Phys. Rev. Lett. 94, 16101 (2005)

    Article  Google Scholar 

  37. Y.J. Zhang, D.K. Zhang, W.M. Guo, S.J. Chen, The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J. Alloys Compd. 685, 84–90 (2016)

    Article  CAS  Google Scholar 

  38. H.S. Kim, E.S. Jung, W.J. Lee, J.H. Kim, S.O. Ryu, S.Y. Choi, Effects of oxygen concentration on the electrical properties of ZnO films. Ceram. Int. 34, 1097–1101 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 52172148, 51872178 and 51702204), the Fundamental Research Funds for the Central Universities (No. GK202003046), the 111 Project (B14041), DNL Cooperation Fund CAS (DNL180311) and the National Key Research Program of China (2016YFA0202403).

Author information

Authors and Affiliations

Authors

Contributions

X. H. Meng performed the important experiment and revised manuscript; Chen, Qi performed the experiment and wrote the manuscript; Y, Ren and Y. L. Zhou helped analyze the experimental data; M. D. Chen and L. Zhang contributed to construction and analysis of atomic model. S. Z. Liu contributed significantly to analysis. B. Liu and H. Q. Yang helped perform the analysis with constructive discussions and revised manuscript.

Corresponding authors

Correspondence to Bin Liu or Heqing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving Human and Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Qi, C., Ren, Y. et al. Enhanced sensitivity of hydrogenated α-Fe2O3 nanoplates having {001} facets and the gas sensing mechanism. J Mater Sci: Mater Electron 33, 3617–3630 (2022). https://doi.org/10.1007/s10854-021-07555-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07555-1

Navigation