Skip to main content
Log in

Ethylene glycol-sensing properties of hydrothermally grown feather-like ZnO nanopowder with abundant oxygen vacancies

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hydrothermal method was used to prepare feather-like ZnO nanopowder for sensing application. The morphological and structural properties have been investigated through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL). The abundance of oxygen vacancy was directly confirmed through the XPS and PL data and was implicitly approved by the resistance variations as a function of the temperature. The gas-sensing features were examined toward methanol, isopropanol, dimethylformamide, acetone, ethanol, and ethylene glycol vapors. The results showed that this sample has a very good selectivity to ethylene glycol (about 4–7 times more than other vapors). The best operating temperature, dynamic response, sensitivity, response/recovery times, and the detection limit of the sample were studied. The effect of the humidity on the performance of the sensor was also investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. V.M. Paiva, K.L.D.S.C. Assis, J.G.A. Rodrigues, C.A. Senna, P.F. de Aguiar, B.S. Archanjo, E.S. Ribeiro, C.A. Achete, E. D’Elia, Electrochemical sensor for ethylene glycol using reduced graphene oxide/AuNp/Ni(OH)2 modified glassy carbon electrode. Mater. Res. 24(5), e20200563 (2021). https://doi.org/10.1590/1980-5373-MR-2020-0563

    Article  CAS  Google Scholar 

  2. R.K. Ibrahim, M. Hayyan, M.A. AlSaadi, S. Ibrahim, A. Hayyan, M.A. Hashim, Physical properties of ethylene glycol-based deep eutectic solvents. J. Mol. Liq. 276, 794–800 (2019). https://doi.org/10.1016/j.molliq.2018.12.032

    Article  CAS  Google Scholar 

  3. C. Su, L. Zhang, Y. Han, C. Ren, M. Zeng, Z. Zhou, Y. Su, N. Hu, H. Wei, Z. Yang, Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sens. Actuators B 304, 127347 (2020). https://doi.org/10.1016/j.snb.2019.127347

    Article  CAS  Google Scholar 

  4. M.M. Liu, S.Y. Ma, Y.H. Cai, N.N. Ma, L. Wang, H. Sheng, ZnO/ZnCo2O4 composite prepared by one-step hydrothermal method for high-performance ethylene glycol sensor. Ceram. Int. 48(15), 22346–22353 (2022). https://doi.org/10.1016/j.ceramint.2022.04.235

    Article  CAS  Google Scholar 

  5. S. Wang, M. Li, L. Ren, Y. Wu, L. Li, Sensing performance for ethylene glycol of hydrothermally self-assembled 3D WO3. Ceram. Int. 48(13), 19206–19216 (2022). https://doi.org/10.1016/j.ceramint.2022.03.213

    Article  CAS  Google Scholar 

  6. P. Bharathi, M.K. Mohan, V. Shalini, S. Harish, M. Navaneethan, J. Archana, M.G. Kumar, P. Dhivya, S. Ponnusamy, M. Shimomura, Y. Hayakawa, Growth and influence of Gd doping on ZnO nanostructures for enhanced optical, structural properties and gas sensing applications. Appl. Surf. Sci. 499, 143857 (2020). https://doi.org/10.1016/j.apsusc.2019.143857

    Article  CAS  Google Scholar 

  7. I.K. Er, I.A. Yıldız, T. Bayraktar, S. Acar, A. Ates, The dependence of the gas sensing properties of ZnO thin films on the zinc concentration. J. Mater. Sci. 32, 8122–8135 (2021). https://doi.org/10.1007/s10854-021-05534-0

    Article  CAS  Google Scholar 

  8. N.S. Hosseini, J. Hasanzadeh, A.A. Ziabari, A comparative study on the structure, morphology and ethanol sensitivity of ZnO thin films alloyed with graphene oxide and reduced graphene oxide. Opt. Quantum Electron. 54, 662 (2022). https://doi.org/10.1007/s11082-022-04029-4

    Article  CAS  Google Scholar 

  9. S.S. Niavol, H.M. Moghaddam, SnO2 nanoparticles/reduced graphene oxide nanocomposite for fast ethanol vapor sensing at a low operating temperature with an excellent long-term stability. J Mater. Sci. 32, 6550–6569 (2021). https://doi.org/10.1007/s10854-021-05372-0

    Article  CAS  Google Scholar 

  10. A.B. Khatibani, Investigation of gas sensing property of zinc oxide thin films deposited by Sol-Gel method: effects of molarity and annealing temperature. Indian J. Phys. 95, 243–252 (2021). https://doi.org/10.1007/s12648-020-01689-4

    Article  CAS  Google Scholar 

  11. S.A. Vanalakar, M.G. Gang, V.L. Patil, T.D. Dongale, P.S. Patil, J.H. Kim, Enhanced gas-sensing response of zinc oxide nanorods synthesized via hydrothermal route for nitrogen dioxide gas. J. Electron. Mater. 48(1), 589–595 (2019). https://doi.org/10.1007/s11664-018-6752-1

    Article  CAS  Google Scholar 

  12. S. Vallejos, I. Gràcia, N. Pizúrová, E. Figueras, J. Čechal, J. Hubálek, C. Cané, Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B 301, 127054 (2019). https://doi.org/10.1016/j.snb.2019.127054

    Article  CAS  Google Scholar 

  13. Z. Bai, C. Xie, M. Hu, S. Zhang, D. Zeng, Effect of humidity on the gas sensing property of the tetrapod-shaped ZnO nanopowder sensor. Mater. Sci. Eng. B 149, 12–17 (2008). https://doi.org/10.1016/j.mseb.2007.11.020

    Article  CAS  Google Scholar 

  14. A.B. Khatibani, A. Shabankhah, Fabrication and ethanol sensing of sol–gel grown zinc oxide powder: the effect of cobalt and copper doping. Appl. Phys. A 127, 308 (2021). https://doi.org/10.1007/s00339-021-04445-5

    Article  CAS  Google Scholar 

  15. S.F.H. Karouei, H.M. Moghaddam, S.S. Niavol, Characterization and gas sensing properties of graphene/polyaniline nanocomposite with long-term stability under high humidity. J. Mater. Sci. 56, 4239–4253 (2021). https://doi.org/10.1007/s10853-020-05532-3

    Article  CAS  Google Scholar 

  16. A.B. Khatibani, Characterization and ethanol sensing performance of sol-gel derived pure and doped zinc oxide thin films. J. Electron. Mater. 48, 3784 (2019)

    Article  Google Scholar 

  17. V.L. Patil, S.S. Kumbhar, S.A. Vanalakar, N.L. Tarwal, S.S. Mali, J.H. Kim, P.S. Patil, Gas sensing properties of 3D mesoporous nanostructured ZnO thin films. New J. Chem. 42, 13573 (2018). https://doi.org/10.1039/c8nj01242c

    Article  CAS  Google Scholar 

  18. S. Nejatinia, S.K. Charvadeh, A.B. Khatibani, The effect of graphene and cobalt on ethanol sensing performance of ZnO based sensor prepared by sol-gel method. Jpn. J. Appl. Phys. 61, 017001 (2022)

    Article  CAS  Google Scholar 

  19. T. Kondo, Y. Sato, M. Kinoshita, P. Shankar, N.N. Mintcheva, M. Honda, S. Iwamori, S.A. Kulinich, Room temperature ethanol sensor based on ZnO prepared via laser ablation in water. Jpn. J. Appl. Phys. 56, 080304 (2017). https://doi.org/10.7567/JJAP.56.080304

    Article  Google Scholar 

  20. S.K. Charvadeh, S. Nejatinia, A.B. Khatibani, M.H. Ahmadi, Growth, characterization and investigation of gas-sensing performance of graphene and copper-doped zinc oxide prepared by sol–gel method. Bull. Mater. Sci. 45, 61 (2022). https://doi.org/10.1007/s12034-021-02644-7(

    Article  Google Scholar 

  21. X. Wang, H. Li, D. Huang, Y. Wang, W. Fan, L. Cai, W. Wang, Y. Chen, G. Han, Y. Song, Effect of Co-doping on the performance of nanosheetlike ZnO ethanol gas sensor. J. Mater. Sci 32, 26529–26538 (2021). https://doi.org/10.1007/s10854-021-07029-4

    Article  CAS  Google Scholar 

  22. W. Guo, T. Liu, H. Zhang, R. Sun, Y. Chen, W. Zeng, Z. Wang, Gas-sensing performance enhancement in ZnO nanostructures by hierarchical morphology. Sens. Actuators B 166, 492–499 (2012). https://doi.org/10.1016/j.snb.2012.02.093

    Article  CAS  Google Scholar 

  23. S. Safa, R. Azimirad, K. Mohammadi, R. Hejazi, A. Khayatian, Investigation of ethanol vapor sensing properties of ZnO flower-like nanostructures. Measurement 73, 588–595 (2015). https://doi.org/10.1016/j.measurement.2015.06.001

    Article  Google Scholar 

  24. F. Gu, D. You, Z. Wang, D. Han, G. Guo, Improvement of gas-sensing property by defect engineering in microwave-assisted synthesized 3D ZnO nanostructures. Sens. Actuators B 204, 342–350 (2014). https://doi.org/10.1016/j.snb.2014.07.080

    Article  CAS  Google Scholar 

  25. H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D. Kim, H. Kim, S.K. Hong, Optimization of a zinc oxide urchin-like structure for high-performance gas sensing. J. Mater. Chem. 22, 1127 (2012). https://doi.org/10.1039/C1JM13696H

    Article  CAS  Google Scholar 

  26. H.W. Huang, J. Liu, G. He, Y. Peng, M. Wu, W.H. Zheng, L.H. Chen, Y. Li, B.L. Su, Tunable macro–mesoporous ZnO nanostructures for highly sensitive ethanol and acetone gas sensors. RSC Adv. 5, 101910–101916 (2015). https://doi.org/10.1039/C5RA20508E

    Article  CAS  Google Scholar 

  27. Q. Zhou, W. Chen, S. Peng, W. Zeng, Hydrothermal synthesis and acetylene sensing properties of variety low dimensional zinc oxide nanostructures. Sci. World J. 489170, 1–8 (2014). https://doi.org/10.1155/2014/489170

    Article  CAS  Google Scholar 

  28. Y. Zeng, T. Zhang, L. Qiao, Preparation and gas sensing properties of the nutlike ZnO microcrystals via a simple hydrothermal route. Mater. Lett. 63, 843–846 (2009). https://doi.org/10.1016/j.matlet.2009.01.012

    Article  CAS  Google Scholar 

  29. L. Song, H. Yue, H. Li, L. Liu, Y. Li, L. Du, H. Duan, N.I. Klyui, Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration. Chem. Phys. Lett. 699, 1–7 (2018). https://doi.org/10.1016/j.cplett.2018.03.021

    Article  CAS  Google Scholar 

  30. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Guell, M. Kumar, K. Awasthi, Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens. Actuators B 292, 24–31 (2019). https://doi.org/10.1016/j.snb.2019.04.083

    Article  CAS  Google Scholar 

  31. S.S. Niavol, H.M. Moghaddam, A.B. Khatibani, S.F.H. Karouei, F. Hermerschmidt, G. Ligorio, E.J.W. List-Kratochvil, Enhancing both methylene blue photocatalytic degradation and ethanol sensing performances of ZnO/rGO nanocomposite through the variation of GO amount. Appl. Phys. A 128, 733 (2022). https://doi.org/10.1007/s00339-022-05890-6

    Article  CAS  Google Scholar 

  32. A. Nandi, R. Majumder, P. Nag, S.K. Datta, H. Saha, S. Majumdar, Precursor dependent tailoring of morphology and bandgap of zinc oxide nanostructures. J. Mater. Sci. Mater. Electron. 28, 10885–10892 (2017). https://doi.org/10.1007/s10854-017-6867-9

    Article  CAS  Google Scholar 

  33. A.A. Ziabari, A.B. Khatibani, Optical properties and thermal stability of solar selective absorbers based on Co–Al2O3 cermets. Chin. J. Phys. 55, 876–885 (2017). https://doi.org/10.1016/j.cjph.2017.02.015

    Article  CAS  Google Scholar 

  34. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Mulenberg, Handbook of X-ray Photoelectron Spectroscopy, (Perkin–Elmer Co., 1979) p. 82. https://doi.org/10.1039/c0ce00618a

  35. H. Naderi, S. Hajati, M. Ghaedi, K. Dashtian, M.M. Sabzehmeidani, Sensitive, selective and rapid ammonia-sensing by gold nanoparticle-sensitized V2O5/CuWO4 heterojunctions for exhaled breath analysis. Appl. Surf. Sci. 501, 144270 (2020). https://doi.org/10.1016/j.apsusc.2019.144270

    Article  CAS  Google Scholar 

  36. A.B. Khatibani, M. Abbasi, Effect of Fe and Co doping on ethanol sensing property of powder-based ZnO nanostructures prepared by sol–gel method. J. Sol-Gel Sci. Technol. 86, 255–265 (2018). https://doi.org/10.1007/s10971-018-4629-7

    Article  CAS  Google Scholar 

  37. V. Manoj, M. Karthika, V.S.R.P. Kumar, S. Boomadevi, K. Jeyadheepan, R.K. Karn, R.J.B. Balaguru, S.K. Pandiyan, Synthesis of ZnO nanoparticles using carboxymethyl cellulose hydrogel. Asian J. Appl. Sci. 7, 798–803 (2014). https://doi.org/10.3923/ajaps.2014.798.803

    Article  CAS  Google Scholar 

  38. S. Duo, Y. Li, Z. Liu, R. Zhong, T. Liu, H. Xu, Preparation of ZnO from 2 D nanosheets to diverse 1 D nanorods and their structure, surface area, photocurrent, optical and photocatalytic properties by simple hydrothermal synthesis. J. Alloys Compd. 695, 2563–2579 (2017). https://doi.org/10.1016/j.jallcom.2016.11.162

    Article  CAS  Google Scholar 

  39. Y. Zhou, L. Xu, Z. Wu, P. Li, J. He, Optical and photocatalytic properties of nanocrystalline ZnO powders synthesized by a low-temperature hydrothermal method. Optik 130, 673–680 (2017). https://doi.org/10.1016/j.ijleo.2016.10.119

    Article  CAS  Google Scholar 

  40. P. Pascariu, N. Olaru, A. Rotaru, A. Airinei, Innovative low-cost carbon/ZnO hybrid materials with enhanced photocatalytic activity towards organic pollutant Dyes’ removal. Nanomaterials 10, 1873 (2020). https://doi.org/10.3390/nano10091873

    Article  CAS  Google Scholar 

  41. S.K. Mishra, R.K. Srivastava, S.G. Prakash, ZnO nanoparticles: structural, optical and photoconductivity characteristics. J. Alloys Compd. 539, 1–6 (2012). https://doi.org/10.1016/j.jallcom.2012.06.024

    Article  CAS  Google Scholar 

  42. V. Kumar, H.C. Swart, O.M. Ntwaeaborwa, R.E. Kroon, J.J. Terblans, S.K.K. Shaat, A. Yousif, M.M. Duvenhage, Origin of the red emission in zinc oxide nanophosphors. Mater. Lett. 101, 57–60 (2013). https://doi.org/10.1016/j.matlet.2013.03.073

    Article  CAS  Google Scholar 

  43. A.M. Soleimanpour, Y. Hou, A.H. Jayatissa, Evolution of hydrogen gas sensing properties of sol–gel derived nickel oxide thin film. Sens. Actuators B 182, 125 (2013). https://doi.org/10.1016/j.snb.2013.03.001

    Article  CAS  Google Scholar 

  44. M. Hjiri, F. Bahanan, M.S. Aida, L. El Mir, G. Neri, High performance CO gas sensor based on ZnO nanoparticles. J. Inorg. Organomet. Polym Mater. 30, 4063–4071 (2020). https://doi.org/10.1007/s10904-020-01553-2

    Article  CAS  Google Scholar 

  45. F. Liu, X. Wang, X. Chen, X. Song, J. Tian, H. Cui, Porous ZnO ultrathin nanosheets with high specific surface areas and abundant oxygen vacancies for acetylacetone gas sensing. ACS Appl. Mater. Interfaces 11, 24757–24763 (2019). https://doi.org/10.1021/acsami.9b06701

    Article  CAS  Google Scholar 

  46. M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens. Actuators B 301, 126845 (2019). https://doi.org/10.1016/j.snb.2019.126845

    Article  CAS  Google Scholar 

  47. J. Wang, R. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44, 7357–7377 (2018). https://doi.org/10.1016/j.ceramint.2018.02.013

    Article  CAS  Google Scholar 

  48. H. Toranjizadeh, P. Shabani, A. Ramezani, Ethanol gas sensing improvement at high humidity levels and optical features using Ba-doped ZnO NPs. Mater. Res. Express 6, 095904 (2019). https://doi.org/10.1088/2053-1591/ab2b70

    Article  CAS  Google Scholar 

  49. X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, Ultra-sensitive glycol sensing performance with rapid-recovery based on heterostructured ZnO-SnO2 hollow nanotube. Mater. Lett. 273, 127967 (2020). https://doi.org/10.1016/j.matlet.2020.127967

    Article  CAS  Google Scholar 

  50. T. Han, S.Y. Ma, X.L. Xu, X.H. Xu, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, Rough SmFeO3 nanofibers as an optimization ethylene glycol gas sensor prepared by electrospinning. Mater. Lett. 268, 127575 (2020). https://doi.org/10.1016/j.matlet.2020.127575

    Article  CAS  Google Scholar 

  51. H. Yang, X. Bai, P. Hao, J. Tian, Y. Bo, X. Wang, H. Liu, A simple gas sensor based on zinc ferrite hollow spheres: highly sensitivity, excellent selectivity and long-term stability. Sens. Actuators B 280, 34–40 (2019). https://doi.org/10.1016/j.snb.2018.10.056

    Article  CAS  Google Scholar 

  52. J. Zhang, J. Guo, H. Xu, B. Cao, Reactive-template fabrication of porous SnO2 nanotubes and their remarkable gas-sensing performance. ACS Appl. Mater. Interfaces 5(16), 7893–7898 (2013). https://doi.org/10.1021/am4019884

    Article  CAS  Google Scholar 

  53. X. Liu, L. Jiang, X. Jiang, X. Tian, X. Sun, Y. Wang, W. He, P. Hou, X. Deng, X. Xu, Synthesis of Ce-doped In2O3 nanostructure for gas sensor applications. Appl. Surf. Sci. 428, 478–484 (2018). https://doi.org/10.1016/j.apsusc.2017.09.177

    Article  CAS  Google Scholar 

  54. F.H. Zhang, Y.C. Wang, L. Wang, J. Liu, H.L. Ge, B. Wang, X.Y. Huang, X.D. Wang, W.F. Xie, High performance In2(MoO4)3@In2O3 nanocomposites gas sensor with long-term stability. J. Alloys Compd. 805, 180–188 (2019)

    Article  CAS  Google Scholar 

  55. P.F. Cao, S.Y. Ma, X.L. Xu, Novel ultra-sensitive dandelion-like Bi2WO6 nanostructures for ethylene glycol sensing application. Vacuum 181, 109748 (2020). https://doi.org/10.1016/j.vacuum.2020.109748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Emil J. W. List-Kratochvil and Dr. Giovanni Ligorio from Humboldt University of Berlin for their support in XPS analysis.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Bagheri Khatibani.

Ethics declarations

Conflict of interest

There are no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat Niavol, S., Bagheri Khatibani, A., Imani, S. et al. Ethylene glycol-sensing properties of hydrothermally grown feather-like ZnO nanopowder with abundant oxygen vacancies. Journal of Materials Research 38, 1211–1223 (2023). https://doi.org/10.1557/s43578-022-00877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00877-8

Keywords

Navigation